D ensity functional calculations of electronic structure, geometric structure and stability for molecular manganese sulfide clusters \dagger

Ian G. D ance* and Keith J. Fisher

School of Chemistry, U niversity of New South W ales, Sydney 2052, A ustralia

Abstract

Questions about the geometrical structures, electronic structures and stabilities of $\left[\mathrm{M} \mathrm{n}_{x} \mathrm{~S}_{y}\right]^{-}$clusters observed in the gas phase have been approached using density functional calculations of electronic structure and energy, optimised geometrical structure, and electron affinity. Results are presented for 61 postulated isomers for 23 different compositions ranging in size from $\left[\mathrm{M} \mathrm{nS}_{2}\right.$] to $\left[\mathrm{M}_{15} \mathrm{~S}_{5} \mathrm{~S}_{5}\right.$, and general structural types and principles are identified. Structures based on stacks of $M n_{3} S_{3}$ triangles are thermodynamically favourable, as are regular $M n_{x}$ polyhedra with ($\mu_{3}-S$) caps. Structures with doubly-bridging S are frequently favourable, but there is no evidence that ($\mu_{4}-\mathrm{S}$) capping confers extra stability. Trigonal MnS_{3} local co-ordination is desirable. Bonding between Mn atoms occurs throughout, at distances from ca. $2 \AA$ in the smallest underco-ordinated structures up to ca. $2.5 \AA$. Electronically these clusters are characterised by a band of closely-spaced bonding molecular orbitals, composed mainly of M n 3 d atomic orbitals, at and below the F ermi level. The H OM O-LU M O gaps are generally very small, and low-lying electronic states with associated magnetic and optical properties are expected. The electron affinities generally increase with cluster size, up to ca. 3.5 eV .

In the preceding paper ${ }^{1}$ we have described the formation, distribution and reactions of molecular cluster ions [$\mathrm{M} \mathrm{n} \mathrm{n}_{\mathrm{x}} \mathrm{S}_{\mathrm{y}}$] generated by laser ablation of solid MnS . This is part of our research on the gas phase chemistry of all metal chal cogenides, ${ }^{2-13}$ in which we have discovered that the sets of compositions (x, y) for the various metal sulfide molecular clusters $\left[M{ }_{x} S_{y}\right]$ depend on the identity of M. The observed compositions correlate with the electron count for M, such that there is general constancy of the normalised valence electron population (the normalised sum of the metal and sulfur valence electrons ${ }^{12}$), largely independent of M and x. It is evident that there is a fundamental pattern of electron population, implying principles of electronic structure, affecting the compositions of stable clusters.

Inquiry into the nature of this principle raises questions about the type or types of stability, which could be thermodynamic, kinetic and/or electronic. Our experiments involve (1) synthesis of $\left[M n_{x} S_{y}\right]^{-}$by aggregation of atoms, ions and electrons in the cooling plasma formed during laser ablation of $\mathrm{MnS}(\mathrm{s})$, (2) synthesis by reaction of isolated clusters with other reagents such as $\mathrm{H}_{2} \mathrm{~S}$, and (3) dissociation of larger clusters by energised collisions. It could be that the band of observed ions in the ion-map ${ }^{1}$ (and the non-observance of many other compositions which might be considered reasonable according to knowledge of condensed phase chemistry) is a measure of fundamental thermodynamic stability. Alternatively, it could be that the observed ions are those which have favourable formation kinetics or are the least susceptible to further reaction. A Iternatively, recognising that the measurement of anions in the gas phase involves species in competition for electrons, it could be that the observed distributions reflect the compositions with largest electron affinity.

These considerations raise another fundamental question: what are the geometrical structures of these ions? Informative spectroscopic data or diffraction data are not yet available, except for measurements of the photoelectron (PE) spectra of smaller members of the series. ${ }^{14} \mathrm{D}$ ensity functional calculations of electronic structure and energy, and of geometry by minimisation of energy, are accurate and expedient for inorganic binary molecules of this type. ${ }^{15-31}$

Therefore in this paper we describe our applications of density functional calculations to the questions of geometrical structure, stability and electron affinity for [$\mathrm{M}_{\mathrm{n}} \mathrm{S}_{\mathrm{y}}$] clusters. Rather than examine all conceivable isomers of all observed compositions, we focus on key compositions with the objective of elucidating the principles applicable to the full series. Little is known about M nS clusters in the condensed phase, in contrast to the greater amount of information on FeS clusters, ${ }^{6}$ and so here we are using the compositions observed in the gas phase to search for the structural principles for M nS clusters.

D ensity F unctional C alculations

The full electronic structures and optimised geometries of postulated structures were calculated using gradient corrected (non-local) density functionals, as implemented in the program DM ol.f ${ }^{\ddagger 32-35}$ The 'blype' functionals were used, incorporating the H artree-Fock-Slater $\rho^{\frac{1}{3}}$ local exchange function, ${ }^{35}$ Becke's 1988 version ${ }^{36}$ of the gradient corrected exchange functional, and the Lee-Yang-Parr ${ }^{37}$ correlation functional which includes both local and non-local terms. The non-local corrections were applied as post-SCF perturbative corrections. The basis sets, expressed numerically rather than analytically, were generated by solution of the DF equations (for each element E) with the same functionals as used for the complete cluster. The extended basis sets employed (type DND in DM ol) were double numerical, augmented with polarisation functions, and obtained by solution of the DF equations for $\mathrm{E}, \mathrm{E}^{2+}$, and with excitation of one valence electron. Core orbitals were frozen in the cluster calculations. For Mn the basis set included $1 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{p}$ (all frozen), $3 \mathrm{~s}, 3 \mathrm{p}, 3 \mathrm{~d}(\times 2), 4 \mathrm{~s}(\times 2), 4 \mathrm{p}(\times 2)$; for S the basis set was $1 \mathrm{~s}, 2 \mathrm{~s}$ (both frozen), $2 \mathrm{p}, 3 \mathrm{~s}(\times 2), 3 \mathrm{p}(\times 2), 3 \mathrm{~d}$. These DND basis sets combine efficiency and accuracy. ${ }^{32}$ The calculations were spin restricted.
M any of the $\left[M n_{x} S_{y}\right]$ clusters are characterised by closely spaced orbitals at the F ermi level, and consequently low-lying excited states occur. Because the objective of this investigation was to explore the broad scope of the geometry-energy hypersurfaces for many isomers, a prelude to examination of specific ground (or excited) states, the calculations of electronic struc-
¥ D M ol 96.0, M SI, 9685 Scranton Road, San D iego, CA 92121-3752.

Fig. 1 M ap of the compositions and abundances of the observed ions [$\left.\mathrm{Mn}_{\mathrm{x}} \mathrm{S}_{\mathrm{y}}\right]^{-}$. The circles represent the ions formed after laser ablation of MnS , and the squares the additional products formed in reactions of [$\left.\mathrm{M} \mathrm{n}_{\mathrm{x}} \mathrm{S}_{\mathrm{y}}\right]^{-}$with $\mathrm{H}_{2} \mathrm{~S}$
ture during geometry optimisation incorporated where necessary an averaging over close-lying states by allowing partial occupancy of orbitals close to the F ermi level. This smearing of the electron density involved orbitals within $<0.02 \mathrm{eV}$ at the Fermi level, and was reduced as much as possible during the final optimisation. The energies and geometries of clusters are hardly affected ($<5 \mathrm{~kJ} \mathrm{~mol}{ }^{-\mathbf{1}}$) by smearing.

Geometry optimisation was effected by minimisation of the total energy. Second derivative calculations have not been undertaken to confirm that stationary points are energy wells, but with experience the quality of a stationary point (as minimum or saddle point) can be gleaned from the behaviour of the first derivatives during the final stages of the energy minimisations: anomalous behaviour and geometries which may not represent true minima are noted with the results. A diabatic electron affinities have been calculated as the difference in binding energy between optimised anion and optimised neutral cluster. The optimised geometries of the neutral and anionic charge states of a cluster were very similar for all but the smallest clusters containing one or two Mn atoms. Partial charges on atoms were calculated by fitting them to the electrostatic potential (ESP) of the cluster: these ESP-derived atomic charges are generally intermediate between those calculated by the Mulliken and Hirshfeld methods.

The accuracy of the calculational method is demonstrated by the calculated electron affinity of $S_{3}, 2.04 \mathrm{eV}$, compared with experimental measurements of 2.093 ± 0.025^{38} and 2.0 ± 0.15 $\mathrm{eV},{ }^{39}$ and by the reproduction of experimental geometries for related metal chalcogenide clusters. ${ }^{27,40}$

Results

The compositions of the ions observed are $\left[\mathrm{M}_{\mathrm{x}} \mathrm{S}_{\mathrm{x}}\right]^{-}$and [$\left.\mathrm{M} \mathrm{n}_{\mathrm{x}} \mathrm{S}_{\mathrm{x}+1}\right]^{-}$for $2 \leqslant \mathrm{x} \leqslant 22$, excluding $\left[\mathrm{M} \mathrm{n}_{5} \mathrm{~S}_{5}\right]^{-}$and $\left[\mathrm{M}_{7} \mathrm{~S}_{7}\right]^{-}$, and including $\left[\mathrm{M} \mathrm{nS}_{3}\right]^{-}$, together with $\left[\mathrm{M} \mathrm{n}_{\mathrm{x}} \mathrm{S}_{\mathrm{x}} \mathrm{O}\right]^{-}$for $4 \leqslant x \leqslant 22$, and $\left[M n_{x} S_{x-1} O\right]^{-}$for $x=11,13,15,17,18$ and 22. D etails of the relative abundances are provided in the preceding paper. ${ }^{1}$ Reactions of these clusters with $\mathrm{H}_{2} \mathrm{~S}$ generate also the species [$M n_{x} S_{x+2}$] for $2 \leqslant x \leqslant 8$. This information about occurrence is presented pictorially in Fig. 1. Clearly there is a general stability principle that the number of chalcogenide atoms is equal to, or one or two greater than, the number of M n atoms. In this paper the ions containing M n and S only are investigated.
M any postulates of geometry can be made, and there are many conceivable isomers particularly for the larger clusters. The object in exploring the geometry-energy hypersurfaces is to identify the general geometrical principles which confer stability. For M nS clusters the electronic structures are such that there are usually close-lying orbitals and therefore closelying electronic states at the Fermi level. E ach state has its own surface, and complete exploration of all relevant states is a resource-expensive search for detail which is effective only after the broader exploration of favourable geometry, reported here. Therefore, where there are very close-lying electronic states the electronic structure is calculated effectively as an average of those states. This allows the optimisation of geometry by minimisation of energy to avoid complications of detail and to explore the geometry-energy hypersurface more efficiently.

General structural principles are evident for metal chalcogenide clusters (often with terminal heteroligands) in condensed phases. ${ }^{6} \mathrm{H}$ owever, there are very few instances of M n clusters with sulfide, ${ }^{41}$ selenide or telluride ${ }^{42}$ ligands, although there is a larger number of manganese oxide clusters. ${ }^{43-51}$ D espite this lack of manganese chalcogenide clusters, there is a close similarity between the $\left[\mathrm{M} \mathrm{n}_{x} \mathrm{~S}_{\mathrm{y}}\right]^{-}$and $\left[\mathrm{Fe}_{\mathrm{x}} \mathrm{S}_{\mathrm{y}}\right]^{-}$cluster distributions in the gas phase, about the line $x=y$, and there are numerous examples of clusters $\left[\mathrm{Fe}_{x} \mathrm{~S}_{\mathrm{y}} \mathrm{L}_{\mathrm{z}}\right.$] characterised in crystal structures. ${ }^{6}$ Thus postulated structures for $\left[M n_{x} S_{x}\right]$ for $x=3-10$ follow our previous suggestions for $\left[\mathrm{Fe}_{x} \mathrm{~S}_{\mathrm{x}}\right]^{5}$ H owever, the [$\left.\mathrm{M} \mathrm{n}_{\mathrm{x}} \mathrm{S}_{\mathrm{y}}\right]^{-}$series extends to higher values of x than for $\left[\mathrm{Fe}_{\mathrm{x}} \mathrm{S}_{\mathrm{y}}\right]^{-}$, and additional structural postulates are needed.

The fact that $x \approx y$ in the $M n S$ clusters suggests structures which are fragments of the rock salt structure of green MnS . These fragments can also be envisaged as confacial fusions of $\mathrm{Mn}_{4} \mathrm{~S}_{4}$ cubes. H owever, there are no marked discontinuities in ion intensity at values of x corresponding to symmetrical fragments of this lattice. For instance, the ion $\left[\mathrm{M}_{13} \mathrm{~S}_{14}\right]^{-}$has the composition of one unit cell of the rock-salt structure of α MnS , but $\left[\mathrm{M}_{13} \mathrm{~S}_{14}\right]^{-}$is relatively weak and does not represent an intensity discontinuity in the mass spectrum. There is another structural principle for metal chalcogenide cores with the composition $\left[\mathrm{M}_{3 \mathrm{~m}} \mathrm{~S}_{3 \mathrm{~m}}\right.$], namely a stacking of $\mathrm{M}_{3} \mathrm{~S}_{3}$ triangles. Both of these principles are incorporated in the geometries explored below.

In the following presentation and discussion of results, the isomers for $\left[M n_{x} S_{y}\right]$ are labelled $\mathbf{x} / \mathbf{y A}, \mathbf{x} / \mathbf{y} \mathbf{B}$, etc. The presentation proceeds from smaller to larger clusters, accumulating understanding. Table 1 contains the calculated binding energies (BE) and electron affinities (EA) for all of the clusters calculated, together with information on the configuration of the highest occupied molecular orbital ($\mathrm{H} O \mathrm{MO}$) and the gap to the lowest unoccupied molecular orbital (LUMO). In order to compare clusters with different compositions, the binding energies of [$M n_{x} S_{y}$] are also tabulated per atom (i.e. divided by $x+y)$, and symbolised as $B E^{\prime}$. The normalised binding energies for the anions $B E^{\prime}(-)$ and the electron affinities are plotted in Figs. 2 and 3 respectively. The optimised structures are presented in the Figures, with key dimensions contained in the captions and text.§ The computational strategy regarding imposed symmetry was to optimise first in relatively high symmetry, and then to relax crucial symmetry elements in order to assess their validity in the energy-minimised structure. The idealised symmetries and the optimisation symmetries are included in Table 1.

Throughout the discussion of results the formal negative signs of BE and EA (see Table 1, Figs. 2, 3) are omitted; this is consistent with experimental measurement of -EA, as the ionisation energy of the anion.
§All dimensions quoted are those of the anion. Bonds are drawn between M n atoms when the distances are $\leqslant 2.6 \AA$.

Table 1 Results of calculations on the isomers of [$\mathrm{Mn}_{\mathrm{x}} \mathrm{S}_{\mathrm{y}}$]

Isomer symbol and short name	Symmetry ideal (optimum ${ }^{\text {b }}$)	Distribution of S types	$B E(0)$ c kJ mol ${ }^{-1}$	$\mathrm{BE}(-)^{\mathrm{d}}$ kJ mol^{-1}	$\mathrm{BE}^{\prime}(0)^{\mathrm{e}} /$ $\mathrm{kJ} \mathrm{mol}^{-1}$ atom ${ }^{-1}$	$\mathrm{BE}^{\prime}(-)^{\mathrm{e}}$ kJ mol^{-1} atom ${ }^{-1}$	EA ${ }^{\mathrm{f}} /$ $\mathrm{eV} \mathrm{mol}^{-1}$	ном O configuration ${ }^{\text {g,h }}$ [LUMOHOM O gap for anion]
1/2A Linear	$\mathrm{D}_{\text {ch }}\left(\mathrm{D}_{6 \mathrm{~h}}\right)$		-494	-764	-165	-255	-2.80	$\left(\mathrm{a}_{19} \mathrm{e}_{2 \mathrm{q}}\right)^{4}$ separated by 0.008 eV
1/2B Bent	$\mathrm{C}_{2 v}$		-565	-776	-188	-259	-2.19	$\left(a_{1} b_{2}\right)^{2}$ separated by 0.003 eV
1/3A Planar	$\mathrm{D}_{3 \mathrm{~h}}$		-976	-1295	-244	-324	-3.31	$\left(\mathrm{a}_{1}\right)^{2}[0.65 \mathrm{eV}]$
1/3B (S_{3})	C_{20}		-749	-868	-232	-217	-1.23	$\left(\mathrm{b}_{1} \mathrm{~b}_{2}\right)^{2}$ separated by 0.006 eV
2/3A Linear	$\mathrm{D}_{\alpha \mathrm{h}}\left(\mathrm{D}_{6 \mathrm{~h}}\right)$	($\mu-\mathrm{S}$)	-794	-1095	-159	-219	-3.12	$\left(\mathrm{a}_{2 \mathrm{u}} \mathrm{e}_{2 \mathrm{~g}} \mathrm{e}_{2 \mathrm{u}}\right)^{\text {) }}$ separated by 0.025
2/3B M n-M n	C_{2}	($\mu-S$)	-1148	-1407	-230	-281	-2.69	(e) $)^{1}[0.37 \mathrm{eV}$]
2/3C	$\mathrm{D}_{3 \mathrm{~h}}$	$(\mu-S)_{3}$	-1127	-1361	-225	-272	-2.43	$\left(\mathrm{e}^{\prime \prime}\right)^{3}[0.59 \mathrm{eV}]$
3/3A Planar	$\mathrm{D}_{3 \mathrm{~h}}$	$(\mu-S)_{3}$	-1334	-1603	-222	-267	-2.78	$\left(\mathrm{eg}_{\mathrm{g}}\right)^{2}[0.065 \mathrm{eV}]$
3/4A	$\mathrm{C}_{3 v}$		-1843	-2088	-263	-298	-2.55	$\left(\mathrm{a}_{2}\right)^{2}[0.24 \mathrm{eV}]$
3/5A	$\mathrm{D}_{3 \mathrm{~h}}$		-2157	-2431	-270	-304	-2.84	$\left(\mathrm{a}_{1}{ }^{\prime \prime}\right)^{2}[0.38 \mathrm{eV}]$
4/4A	$\mathrm{D}_{\text {ah }}$	$(\mu-S)_{4}$	-1725	-2041	-216	-255	-3.28	$\left(e_{u} b_{2 u}\right)^{5}[0.26 \mathrm{eV}]$
4/4B	$\mathrm{D}_{2 \mathrm{~d}}$	$(\mu-S)_{4}$	-1940	-2253	-242	-282	-3.25	$\left(a_{1}\right)^{5}$ [$[0.70 \mathrm{eV}]$
4/4C Cubane	Td	$\left(\mu_{3}-\right)_{4}$	-2052	-2164	-257	-271	-1.16	$\left(\mathrm{t}_{1}\right)^{5}{ }^{5}$ [0.07 eV]
4/4D Stellated	$\mathrm{D}_{2 \mathrm{~d}}\left(\mathrm{C}_{2 \mathrm{v}}\right)$	$(\mu-S)_{4}$	-2028	-2274	-253	-284	-2.55	$\left(\mathrm{b}_{2}\right)^{1}[0.40 \mathrm{eV}]$
4/5A Stellated M_{4} tetrahedron	$\mathrm{C}_{2 v}$	$(\mu-S)_{5}$	-2526	-2788	-281	-310	-2.72	$\left(b_{2}\right)^{1}[0.10 \mathrm{eV}]$
4/5B M n_{4} Square	$\mathrm{C}_{4 v}$	$(\mu-S)_{4}\left(\mu_{4}-S\right)$	-2346	-2592	-261	-288	-2.55	$\left(\mathrm{a}_{1}\right)^{1}[0.37 \mathrm{eV}]$
4/5C M ${ }_{4}$ Butterfly	$\mathrm{C}_{2 v}$	$(\mu-S)_{4}\left(\mu_{4}-S\right)$	-2369	-2611	-263	-290	-2.51	$\left(a_{1} b_{2}\right)^{1}$ separated by 0.006 eV [0.14 eV]
4/6A Stellated $M \mathrm{n}_{4}$ tetrahedron	$\mathrm{T}_{\text {d }}$	$(\mu-S)_{6}$	-2925	-3209	-292	-321	-2.95	$\left(\mathrm{t}_{2}\right)^{5}[0.17 \mathrm{eV}]$
4/6B M n_{4} Square	$\mathrm{D}_{4 \mathrm{~h}}$	$(\mu-S)_{4}\left(\mu_{4}-\mathrm{S}\right)_{2}$	-2681	-2935	-268	-293	-2.63	$\left(b_{19} \mathrm{e}_{4}\right)^{3}$ separated by 0.006 eV [0.04 eV]
5/5A	C_{5}	$(\mu-S)_{5}$	-2619	-2911	-262	-291	-3.03	$\left(\mathrm{a}^{\prime \prime}\right)^{2}[0.25 \mathrm{eV}]$
5/5B	C_{5}	$\left(\mu_{3}-\mathrm{S}\right)_{3}(\mu-\mathrm{S})_{2}$	-2738	-2958	-274	-296	-2.28	$\left(\mathrm{a}^{\prime \prime}\right)^{2}$ [0.023 eV]
5/5C Intersecting square pyramids	$\mathrm{Cav}_{4 v}$	$\left(\mu_{3}-\mathrm{S}\right)_{4}\left(\mu_{4}-\mathrm{S}\right)$	-2616	-2822	-262	-282	-2.14	$\left(\mathrm{b}_{2}\right)^{2}[0.17 \mathrm{eV}]$
5/6A	$\mathrm{D}_{3 \mathrm{~h}}$	$\left(\mu-S_{6}\right.$	-3023	-3327	-275	-302	-3.16	$\left(e^{\prime \prime} e^{\prime}\right)^{4}$ separated by 0.009 eV [0.26 eV]
5/6B	$\mathrm{D}_{3 \mathrm{~h}}$	$\left(\mu-S_{6}\right.$	-3017	-3252	-274	-296	-2.44	$\left(\mathrm{a}_{1}\right)^{2}[0.023 \mathrm{eV}]$
6/6A Stacked triangles	$\mathrm{D}_{3 \mathrm{~d}}$	$(\mu-S)_{6}$	-3395	-3645	-283	-304	-2.59	$\left(\mathrm{eg}_{9}\right)^{3}[0.037 \mathrm{eV}]$
6/6B F used cubes	$\mathrm{D}_{2 \mathrm{~h}}$	$(\mu-S)_{2}\left(\mu_{3}-\mathrm{S}\right)_{4}$	-3250	-3468	-271	-289	-2.26	$\left(\mathrm{b}_{29} \mathrm{~b}_{1 \mathrm{u}}\right)^{1}$ separated by 0.004 eV [0.18 eV]
6/6C Stacked chairs	$\mathrm{D}_{3 \mathrm{~d}}$	$\left(\mu_{3}-\right)_{6}$	-3117	-3310	-260	-276	-2.01	$\left(\mathrm{a}_{24}\right)^{1}[0.030 \mathrm{eV}]$
6/6D Basket	$\mathrm{C}_{2 v}$	$\begin{aligned} & \left(\mu_{4}-S\right)\left(\mu_{3}-S\right)_{4} \\ & (\mu-S) \end{aligned}$	-3389	-3599	-282	-300	-2.18	$\left(b_{2} a_{1}\right)^{1}$ separated by 0.003 eV [0.042 eV]
6/7A M onocapped stacked triangles	C_{3}	$\left(\mu_{3}-\right)_{7}$	-3845	-4124	-296	-317	-2.89	(e) ${ }^{3}$ [0.13 eV]
6/8A Bicapped stacked triangles	0_{h}	$\left(\mu_{3}-\right)_{8}$	-4328	-4629	-309	-331	-3.12	$\left(\mathrm{e}_{\mathrm{g}}\right)^{3}[0.075 \mathrm{eV}]$
8/8A	D_{2}	$\left(\mu_{3}-\right)_{4}(\mu-S)_{4}$	-4650	-4970	-291	-311	-3.31	$\left(\mathrm{b}_{2}\right)^{1}[0.17 \mathrm{eV}]$
8/8B M n ${ }_{8}$ Square antiprism	$\mathrm{D}_{4 \mathrm{~d}}$	$\left(\mu_{3}-\right)_{8}$	-4361	-4673	-273	-292	-3.24	$\left(e_{2}\right)^{1}[0.26 \mathrm{eV}]$
8/8C Bridged cubanes	$\mathrm{D}_{2 \mathrm{~d}}$	$\left(\mu_{4}-\mathrm{S}\right)_{4}\left(\mu_{3}-\mathrm{S}\right)_{4}$	-4465	-4694	-279	-293	-2.37	$\left(b_{1}\right.$ e) ${ }^{3}$ separated by 0.018 eV [0.091 eV]
8/8D	$\mathrm{D}_{2 \mathrm{~d}}$		-4293	-4549	-268	-284	-2.65	(e) ${ }^{1}[0.052 \mathrm{eV}]$
8/8E	C_{2}		-4666	-4924	-292	-308	-2.68	$\left(\mathrm{a}_{1}\right)^{1}[0.033 \mathrm{eV}]$
8/9A Stacked triangles void M n	Cs	$\left(\mu_{3}-\right)_{7}(\mu-S)_{2}$	-4949	-5248	-291	-309	-3.11	$\left(\mathrm{a}^{\prime \prime}\right)^{2}$ [0.042 eV]
8/9B M_{n} Square antiprism	$\mathrm{C}_{4 v}$	$\begin{aligned} & \left(\mu_{4}-S\right)\left(\mu_{3}-S\right)_{4} \\ & \left(\mu_{3}-S\right)_{4} \end{aligned}$	-4754	-5049	-280	-297	-3.07	$\left.(\mathrm{eb})^{2}\right)^{5}$ degenerate [0.07 eV]
8/9C	C_{2}	$\begin{aligned} & \left(\mu_{4}-S\right)^{\prime}\left(\mu_{3}-S\right)_{6} \\ & (\mu-S)_{2} \end{aligned}$	-4934	-5271	-290	-310	-3.50	$\left(\mathrm{b}_{1}\right)^{1}[0.090 \mathrm{eV}]$
8/9D	C_{5}	$\left(\mu_{3}-\right)_{5}(\mu-S)_{4}$	-4929	-5252	-290	-309	-3.35	$\left(\mathrm{a}^{\prime \prime}\right)^{1}[0.08 \mathrm{eV}]$
8/9E	C_{5}	$\left(\mu_{4}-S\right)\left(\mu_{3}-\right)_{8}$	-5039	-5320	-296	-313	-2.92	($\left.\mathrm{a}^{\prime}\right)^{1}{ }^{1}[0.01 \mathrm{eV}]$
8/9F	C_{5}	$\left(\mu_{3}-\right)_{7}(\mu-S)_{2}$	-5056	-5370	-297	-316	-3.25	($\mathrm{a}^{\prime}{ }^{1}{ }^{1}[0.023 \mathrm{eV}]$
8/9G	$\mathrm{D}_{3 \mathrm{sh}}$	$\left(\mu_{3}-\right)_{6}(\mu-S)_{3}$	-4984	-5255	-293	-309	-2.81	$\left(\mathrm{a}_{1}{ }^{\prime 2}\right)^{1}[0.23 \mathrm{eV}]$
8/9H	$\mathrm{D}_{3 \mathrm{ln}}$		-4996 -4736	-5314 -6072	-2934 -279	-313 -298	-3.30 -3.49	($\left.\mathrm{a}^{\prime}{ }^{1}\right)^{1}[0.18 \mathrm{eV}]$
8/9]	$\mathrm{D}_{3 \mathrm{hn}}$	$\left(\mu_{4}-\mathrm{S}_{3}\left(\mu_{3}-\mathrm{S}\right)_{6}\right.$	-4604	-4869	-271	-286	-2.75	$\left(\mathrm{a}_{1}^{\prime}\right)^{1}[0.12 \mathrm{eV}]$
8/9K	C_{30}	$\left(\mu_{3}-5\right)_{3}(\mu-S)_{6}$	-5023	-5362	-295	-315	-3.52	(e) ${ }^{1}$ [0.17 eV]
8/9L	$\mathrm{C}_{3 v}$	$\left(\mu_{3}-\right)_{6}(\mu-S)_{3}$	-4967	-5251	-292	-309	-2.94	$\left(e a_{1}\right)^{3}$ separated by 0.02 eV
9/9A Stacked triangles	$\mathrm{D}_{3 \mathrm{~h}}$	$\left(\mu_{4}-S\right)_{3}\left(\mu_{3}-S\right)_{6}$	-5280	-5563	-293	-309	-2.93	$\left(\mathrm{a}_{2} \mathrm{a}_{1}\right)^{2}$ separated by 0.01 eV
9/9B	$\mathrm{C}_{4 v}$	$\begin{aligned} & \left(\mu_{4}-S\right)\left(\mu_{3}-S\right)_{4} \\ & (\mu-S)_{4} \end{aligned}$	-5107	-5380	-284	-299	-2.84	$\left(\mathrm{b}_{1}\right)^{2}[0.08 \mathrm{eV}]$
10/10A	$\mathrm{C}_{2 \mathrm{v}}\left(\mathrm{C}_{2}\right)$	$\left(\mu_{3}-S\right)_{8}(\mu-S)_{2}$	-5811	-6126	-291	-306	-3.26	$\left(\mathrm{a}_{2}\right)^{1}[0.10 \mathrm{eV}]$
12/12A Stacked	$\mathrm{D}_{3 \mathrm{~d}}$	$\left(\mu_{4}-S\right)_{6}\left(\mu_{3}-S\right)_{6}$	-7218	-7501	-301	-313	-2.94	$\left(e_{9}\right)^{3}[0.07 \mathrm{eV}]$

Table 1 (Continued)

${ }^{\text {a }}$ See the Figs. for structural details. ${ }^{\text {b }}$ The symmetry used in the optimisation is given in parentheses only when different from the ideal point group symmetry. ${ }^{\mathrm{c}}$ The total binding energy for the neutral cluster. ${ }^{\mathrm{d}}$ The total binding energy for the anionic cluster. ${ }^{\text {e }}$ Total binding energy divided by the number of atoms in the cluster. ${ }^{f}$ Electron affinity (adiabatic) defined as the binding energy of the optimised anion minus the binding energy of the optimised neutral species. ${ }^{9}$ Orbital labels are those of the point group used in optimisation. ${ }^{\text {h }}$ For the anion. Where very closely spaced orbitals are fractionally occupied (see text) the overall configuration and energy separation of the orbitals is given.

Fig. 2 The calculated normalised binding energies ($\mathrm{kJ} \mathrm{mol}^{-\mathbf{1}}$) for isomers of the anions $\left[\mathrm{M} \mathrm{n}_{\mathrm{x}} \mathrm{S}_{\mathrm{y}}\right]^{-}$, arranged according to the numbers of atoms in the clusters $(x+y)$. These are the data contained in Table 1

$\left[\mathrm{M} \mathrm{nS}_{2}\right],\left[\mathrm{M} \mathrm{SS}_{3}\right]$ and $\left[\mathrm{M}_{2} \mathrm{~S}_{3}\right]$

These structures are shown in F ig. 4. B ent $\mathrm{MnS}_{2}, \mathbf{1 / 2 B}$, is slightly more stable than the linear isomer 1/2A, but the linear isomer is calculated to have a substantially larger EA. However, these small molecules are calculated to have orbitals within 0.01 eV at the Fermi level, and the geometry of $\mathbf{1 / 2 B}$ is quite charge dependent (see Fig. 4). The isomer $\mathrm{Mn}\left(\eta^{2}-\mathrm{S}_{2}\right)$ was investigated and found to have a continuous surface for energy reduction

Fig. 3 The calculated electron affinities (eV) for isomers of the clusters $\left[M n_{x} S_{y}\right]^{0}$, arranged according to the numbers of atoms in the clusters ($x+y$). These are the data contained in Table 1
down to the bent isomer 1/2B involving insertion of M n in the S-S bond.

Zhang et al. ${ }^{\mathbf{1 4}}$ measured the photoelectron spectrum of $\left[\mathrm{M} \mathrm{nS}_{2}\right]^{-}$generated in a cooled pulse of helium which had passed through the plasma formed by laser vaporisation of a mixture of elemental M n and S . Their spectrum contained both broad and sharp features with EA values of 1.32 and 2.94 eV , which they interpreted as the occurrence of two isomers: the broad feature with smaller EA was suggested to represent

Fig. 4 The optimised structures for $\mathrm{MnS}_{2}, \mathrm{MnS}_{3}$ and $\mathrm{Mn}_{2} \mathrm{~S}_{3}$. In this and all subsequent figures, dark circles are M n , speckled circles are S
$\left[\mathrm{Mn}\left(\eta^{2}-\mathrm{S}_{2}\right)\right]^{-}$and the sharp feature with the larger EA was attributed to the linear isomer $\mathbf{1 / 2 A}$. There is good agreement between the measured value of 2.94 eV and our calculation of 2.8 eV for the EA of $\mathbf{1 / 2 A}$. Further, we believe that the more flexible isomer $\mathbf{1 / 2 B}$ has a smaller EA of 2.2 eV , but not as low as quoted by Zhang et al., who comment that the low energy region of their spectrum is unusual.

For MnS_{3}, calculations of a variety of possible structures lead to the conclusion that the $D_{3 n}$ planar isomer 1/3A is much more stable than any other geometry, including the [$\mathrm{M} \mathrm{n}\left(\mathrm{S}_{3}\right)$] isomer $\mathbf{1 / 3 B}$. The BE' and the EA are very favourable, and there is a 0.65 eV gap between the HOMO and LUM O in the anion. The Mn - S distance in the anion, $2.050 \AA$, is $0.025 \AA$ longer than in the neutral molecule. The photoelectron spectrum for [$\left.\mathrm{M} \mathrm{nS} 3_{3}\right]^{-}$reported by Zhang et al. ${ }^{14}$ shows features corresponding to an EA for $\left[\mathrm{M} \mathrm{nS}_{3}\right]$ of 1.56 eV and the onset of a feature at ca. 3.2 eV . Considering our calculated EA values of 1.23 eV for $\mathbf{1 / 3 B}$ and 3.31 eV for $\mathbf{1 / 3 A}$, it is possible that the sample investigated by Zhang et al. contained both isomers.

For $\left[\mathrm{M}_{2} \mathrm{~S}_{3}\right]^{-}$the most stable structure is $2 / 3 \mathrm{~B}$, which has a $\mathrm{Mn}-\mathrm{M} \mathrm{n}$ bond ($1.96 \AA$) with an acute $\mu-\mathrm{S}$ bridge ($\mathrm{M} n-\mathrm{S} 2.23 \AA$), two terminal $\mathrm{Mn}-\mathrm{S}$ bonds $(2.07 \AA$), and is non-planar. Two alternative isomers are linear $\mathbf{2 / 3 A}$, and $2 / 3 \mathrm{C}$ which has $\left(\mu_{3}-\mathrm{S}\right)_{3}$ around a short ($1.89 \AA$) $\mathrm{M} \mathrm{n}-\mathrm{Mn}$ bond. The photoelectron spectrum ${ }^{14}$ of $\left[\mathrm{Mn}_{2} \mathrm{~S}_{3}\right]^{-}$is ill-defined but was interpreted in terms of an EA of 1.68 eV and a suggestion of structure $\mathbf{2 / 3 C}$. The experimental data and our calculations are inconclusive about $\left[\mathrm{M}_{2} \mathrm{~S}_{3}\right]^{-}$.

[$\left.\mathrm{M}_{3} \mathbf{S}_{3}\right],\left[\mathrm{M}_{3} \mathbf{S}_{4}\right.$] and $\left[\mathrm{M}_{3} \mathbf{S}_{5}\right.$]

These three compositions are based on an $M \mathrm{n}_{3}$ triangle, with $(\mu-S)_{3}$ bridges. For $\mathrm{Mn}_{3} \mathrm{~S}_{3}$ the $\mathrm{D}_{3 \mathrm{~h}}$ isomer 3/3A (see Fig. 5) with in-plane bridges is more stable than non-planar isomers of $M n_{3}(\mu-S)_{3}$ in which the bridges are folded out of plane. Structure $\mathbf{3 / 3 A}$ is a fundamental unit for many of the larger molecules: $\left[\mathrm{M} \mathrm{n}_{3} \mathrm{~S}_{3}\right]^{-}$has $\mathrm{Mn}-\mathrm{Mn} 2.15 \AA, \mathrm{M} \mathrm{n}-\mathrm{S} 2.24 \AA$, a H OM O configuration $\left(e_{\mathrm{g}}\right)^{2}$, and a 0.065 eV separation to the LUM 0 . The electronic and orbital structure of 3/3A is described below. The good agreement between the calculated EA of 2.78 eV for 3/3A and the well defined photoelectron spectrum ${ }^{14}$ for

Fig. 5 Structures of the isomers of $\left[\mathrm{M} \mathrm{n}_{3} \mathrm{~S}_{3}\right],\left[\mathrm{M} \mathrm{n}_{3} \mathrm{~S}_{4}\right],\left[\mathrm{M} \mathrm{n}_{3} \mathrm{~S}_{5}\right]$, [$\mathrm{M} \mathrm{n}_{4} \mathrm{~S}_{4}$], $\left[\mathrm{M} \mathrm{n}_{4} \mathrm{~S}_{5}\right.$] and [$\mathrm{M} \mathrm{n}_{4} \mathrm{~S}_{6}$]
[$\left.\mathrm{M} \mathrm{n}_{3} \mathrm{~S}_{3}\right]^{-}$which shows an EA of 2.7 eV engenders confidence in the results of both investigations. On the basis of the comparative photoelectron spectra Zhang et al. ${ }^{14}$ comment favourably on the 3/3A paradigm.

For $\mathrm{Mn}_{3} \mathrm{~S}_{4}$, theconnectivity $\mathrm{M}_{3}\left(\mu_{3}-\mathrm{S}\right)(\mu-\mathrm{S})_{3}$ wasexplored. This is a fragment of the cubanoid structure $\mathrm{M}_{4} \mathrm{~S}_{4}$ with one M position void, i.e. 3/4A' in Fig. 5. H owever the optimised geometry is a modification, $\mathbf{3} / 4 \mathrm{~A}$, which has the $\mathrm{M} \mathrm{n}_{3}(\mu-\mathrm{S})_{3}$ section close to planar. This shows that the coplanarity of the $\mathrm{Mn}_{3}(\mu-\mathrm{S})_{3}$ section is more influential than the symmetrical trigonal MnS_{3} local co-ordination of each Mn in $3 / 4 A^{\prime}$. In $\mathbf{3 / 4 A}$ the HOMO configuration is $\left(\mathrm{a}_{2}\right)^{2}\left(\mathrm{C}_{3 v}\right)$, the gap to the LUM O is 0.24 eV , the $\mathrm{Mn}-\left(\mu_{3}-S\right)$ distance is $2.27 \AA$, the $\mathrm{M} \mathrm{n}-(\mu-\mathrm{S})$ distance is $2.22 \AA$, and $\mathrm{Mn}-\mathrm{Mn}$ is $2.25 \AA$.
The optimised structure $3 / 5 \mathrm{~A}$ of $\mathrm{M}_{3} \mathrm{~S}_{5}$ follows the pattern established in the two preceding compositions, with connectivity $M n_{3}\left(\mu_{3}-S\right)_{2}(\mu-S)_{3}, M n-M n=2.34 \AA, M n-\left(\mu_{3}-S\right)=2.32 \AA$, $\mathrm{Mn}-(\mu-\mathrm{S})=2.22 \AA$. The H OM O configuration is $\left(\mathrm{a}_{1}\right)^{2}$ in symmetry $\mathrm{D}_{3 \mathrm{~h}}$, with a 0.38 eV HOM O-LU M 0 separation.
The $B E^{\prime}$ and the EA both increase in the sequence $3 / 3 \mathrm{~A}<$ $3 / 4 \mathrm{~A}<3 / 5 \mathrm{~A}$. The lower values for 3/3A, which are lower also in comparison with other nearby compositions, are consistent with the low abundance of $\left[\mathrm{Mn}_{3} \mathrm{~S}_{3}\right]^{-}$in the mass spectra: specifically the BE' of $267 \mathrm{~kJ} \mathrm{~mol}^{-1}$ atom $^{-1}$ for $3 / 3 \mathrm{~A}$ is less than 324 kJ mol^{-1} atom $^{-1}$ for $1 / 3 \mathbf{A}, 281 \mathrm{~kJ} \mathrm{~mol}^{-1}$ atom $^{-1}$ for $2 / 3 \mathrm{~B}, 298 \mathrm{~kJ}$ mol^{-1} atom ${ }^{-1}$ for $\mathbf{3 / 4 A}$. The relatively high stability ($\mathrm{BE}^{\prime} 304 \mathrm{~kJ}$ mol^{-1} atom ${ }^{-1}$) calculated for $\left[\mathrm{M}_{3} \mathrm{~S}_{5}\right]^{-}(3 / 5 \mathrm{~A})$ is evident experimentally only as the product of addition of $\mathrm{H}_{2} \mathrm{~S}$ to $\left[\mathrm{M}_{3} \mathrm{~S}_{4}\right]^{-}$, not through occurrence in the original laser ablation products.

[$\mathrm{M} \mathrm{n}_{4} \mathrm{~S}_{4}$]

Four isomers (Fig. 5) have been explored, namely (1) 4/4A with $M n_{4}(\mu-S)_{4}$ connectivity in symmetry $D_{4 h}$ (2) $4 / 4 B$ with the same
connectivity but with out-of-plane bridges and without square planarity imposed on the Mn_{4} quadrilateral, (3) the well-known cubanoid $M n_{4}\left(\mu_{3}-S\right)_{4}$ structure, $4 / 4 C$, which is a face-capped $M n_{4}$ tetrahedron, and (4) 4/4D which is an M_{4} tetrahedron with four edge bridges, $M n_{4}(\mu-S)_{4}$, and stellated topology. I somer 4/4B optimised to square planar $M n_{4}$ and symmetry $D_{2 d}$; isomer 4/4C optimised from low symmetry to T_{d} (although the geometry-energy surface is rather flat to deviations from T_{d} symmetry); and isomer 4/4D optimised to $\mathrm{D}_{2 \mathrm{~d}}$ in which the bridged M n-M n edges are $2.30 \AA$ and the unbridged edges 2.14 \AA. Isomer 4/4A is not a transition state for interconversion of non-planar isomers like 4/4B. The cubanoid isomer 4/4C is not the most stable as monoanion, but is calculated to be the most stable as neutral, and accordingly it is calculated to have an unusually low EA of 1.16 eV . I somers 4/4B and 4/4D have the better $B E$ ' values as monoanions, while isomers 4/4A and 4/4B have competitive electron affinities.
The three isomers $4 / 4 \mathrm{~A}, 4 / 4 \mathrm{~B}$ and $4 / 4 \mathrm{C}$ have closely spaced orbitals at the Fermi level: for the 4/4B isomer of $\left[\mathrm{M}_{4} \mathrm{~S}_{4}\right]^{-}$an a_{1} orbital and an e orbital are the highest occupied, separated by only 0.005 eV , and contain five electrons, above which there is a gap of 0.69 eV to the LUMO. However isomer 4/4D has a HOM O-LUM O gap of 0.40 eV in the monoanion. In 4/4B the $\mathrm{M} \mathrm{n}-\mathrm{M}$ n distance is $2.09 \AA$, and $\mathrm{M} \mathrm{n-S} 2.23 \AA$, while in 4/4D the bridged and unbridged $\mathrm{Mn}-\mathrm{Mn}$ distances are 2.30 and $2.14 \AA$ respectively and all $\mathrm{Mn}-\mathrm{S}$ distances are $2.21 \AA$.
The overall results (Table 1) suggest that 4/4B is more likely to occur for $\left[\mathrm{M}_{4} \mathrm{~S}_{4}\right]^{-}$, but are not conclusive. Detailed evaluation of the electronic states will be required in order to be more definitive about the structure of $\left[\mathrm{M}_{4} \mathrm{~S}_{4}\right]^{-}$. H owever we note that $\left[M \mathrm{n}_{4} \mathrm{~S}_{4}\right]^{-}$has very low (2\%) relative intensity, and that the $B E^{\prime}$ values for other nearby observed ions, $\left[\mathrm{M}_{3} \mathrm{~S}_{4}\right]^{-}$and [$\left.\mathrm{M}_{4} \mathrm{~S}_{5}\right]^{\text {, }}$, are calculated to be larger than for all isomers of [$\left.\mathrm{M}_{4} \mathrm{~S}_{4}\right]^{-}$, consistent with the relative abundances observed.

Comparison of our results with the mass spectrum and photoelectron spectrum of $\left[M \mathrm{n}_{4} \mathrm{~S}_{4}\right]^{-}$by Zhang et al. ${ }^{14}$ shows a difference in relative abundance of this ion, ${ }^{1}$ as well as an EA of 1.53 eV which is not reproduced by the calculations. We note however that the published PE spectrum shows a feature at ca. 2.5 eV which could be interpreted as due to our most stable isomer 4/4D.

[$\mathrm{M}_{4} \mathbf{S}_{5}$] and $\left[\mathrm{M}_{4} \mathbf{S}_{6}\right.$]

Three isomers (Fig. 5) have been investigated for $\mathrm{Mn}_{4} \mathrm{~S}_{5}$, encompassing two connectivity types, $\mathrm{Mn}_{4}(\mu-\mathrm{S})_{5}$ and $\mathrm{M}_{4}{ }^{-}$ $\left(\mu_{4}-S\right)(\mu-S)_{4}$. Isomer $4 / 5 \mathrm{~A}$, an M_{4} tetrahedron with five edges doubly bridged, and stellated like 4/4D, has the best BE' and $E A$. For anionic $4 / 5 A$ the configuration is $\left(b_{2}\right)^{1}$ (symmetry $\left.C_{2 v}\right)$ with a gap of only 0.10 eV to the LUM 0 : the bridged $\mathrm{M} \mathrm{n}-\mathrm{M} \mathrm{n}$ distances are 2.35 and $2.41 \AA$, unbridged $M n-M n$ is $2.03 \AA$, and the $\mathrm{Mn}-\mathrm{S}$ distances are $2.20,2.22 \AA$. Of the two $\mathrm{M} \mathrm{n}_{4^{-}}$ $\left(\mu_{4}-S\right)(\mu-S)_{4}$ structures, $4 / 5 B$ has symmetry $C_{4 v}$, while $4 / 5 \mathrm{C}$ $\left(C_{2 v}\right)$ has an additional $\mathrm{Mn}-\mathrm{Mn}$ bond and the M_{4} frame is folded in a butterfly shape: anionic 4/5C has a central $\mathrm{M} \mathrm{n-M} \mathrm{n}$ bond of $2.01 \AA$, other $\mathrm{M} \mathrm{n}-\mathrm{Mn} 2.44 \AA, \mathrm{M} \mathrm{n}-\mathrm{S}$ distances 2.18$2.36 \AA$.

Two structures have been investigated for $\mathrm{Mn}_{4} \mathrm{~S}_{6}$ (see Fig. 5). The stellated polyhedron 4/6A is tetrahedro-M n_{4}-octahedro-$(\mu-S)_{6}$ with high symmetry $\left(T_{d}\right)$, while 4/6B has connectivity $M n_{4}\left(\mu_{4}-S\right)_{2}(\mu-S)_{4}$ with an $M n_{4}$ square, symmetry $D_{4 n}$. Isomer 4/ 6A has the morefavourable BE and EA, and its stability follows that of the related stellated isomer 4/5A. The configurations for neutral and anionic 4/6A are $\left(\mathrm{t}_{2}\right)^{4}$ and $\left(\mathrm{t}_{2}\right)^{5}$ respectively, with gaps of 0.11 and 0.17 eV to the LUM 0 .

[$\mathrm{M} \mathrm{n}_{5} \mathrm{~S}_{5}$] and $\left[\mathrm{M}_{\mathbf{5}} \mathbf{S}_{6}\right.$]

The anion $\left[\mathrm{M}_{5} \mathrm{~S}_{5}\right]^{-}$(Fig. 6) is distinctive in being absent from the mass spectrum, and therefore calculations have been undertaken in order to discern some reason for this. One relatively

Fig. 6 Structures of the isomers of $\left[M n_{5} S_{5}\right]$ and $\left[M n_{5} S_{6}\right]$
symmetric ($C_{4 v}$) structure, $\mathbf{5 / 5 C}$, with connectivity $\mathrm{M}_{5}\left(\mu_{4}-\mathrm{S}\right)$ -$\left(\mu_{3}-S\right)_{4}$, can be regarded as interpenetrating square pyramids of $M \mathrm{n}_{5}$ and S_{5}, but its BE' and EA are uncompetitive. The other two isomers, $5 / 5 \mathrm{~A}$ and $5 / 5 \mathrm{~B}$ are S -void derivatives of the two $M \mathrm{n}_{5} \mathrm{~S}_{6}$ isomers $5 / 6 \mathrm{~A}$ and $\mathbf{5 / 6 B}$ respectively. Isomers $5 / 6 \mathrm{~A}$ and $\mathbf{5}$ / 6B are an informative pair, because both are $D_{3 h}$ and based on an $\mathrm{M} \mathrm{n}_{5}$ trigonal bipyramid, while one ($5 / 6 \mathrm{~A}$) has only doublybridging sulfide and the other ($\mathbf{5} / 6 \mathrm{~B}$) has only triply-bridging sulfide. They clearly distinguish the bridging modes and the $M n^{\text {eq }}$ co-ordination ($M n^{\text {eq }} S_{2}$ and $M n^{\text {eq }} S_{4}$ respectively for $5 / 6 \mathrm{~A}$ and $\mathbf{5 / 6 B}$) while the $\mathrm{M} \mathrm{n}-\mathrm{M} \mathrm{n}$ bonding of the core is unchanged. The $(\mu-S)_{6}$ isomer $5 / 6 \mathrm{~A}$ has the better BE' and a markedly better EA, and signifies the favourability of doubly-bridging sulfide. The lesser stability of $\mathbf{5 / 6 B}$ is probably partly due to unfavourably close approach ($3.3 \AA$) of $\mu_{3}-$ S atoms. Wenote also that $5 / 6 \mathrm{~A}$ has more planar trigonal $\mathrm{MnS}_{3} \mathrm{CO}$-ordination of the two axial Mn atoms. The $\mathrm{M} \mathrm{n}-\mathrm{M} \mathrm{n}$ distances also clearly reflect the differences in bridging: in both structures the $\mathrm{M} \mathrm{n}^{\text {ax }} \cdots \mathrm{M} \mathrm{n}^{\text {eq }}$ distance is ca. $2.45 \AA$, while the $M n^{\text {ax }} \cdots M$ nax distance is shorter (2.21 \AA) in $\mathbf{5 / 6 A}$ with lesser bridging than in $\mathbf{5 / 6 B}(2.31 \AA$).
Isomers 5/5A and 5/5B were optimised from starting geometries obtained by removal of one S from $\mathbf{5 / 6 A}$ and $\mathbf{5 / 6 B}$ respectively, and in both cases the lesser co-ordinated $\mathrm{M} \mathrm{nax}^{\text {ax }}$ and its two S atoms move away from the original three-fold axis. The energy differentiation of $5 / 6 \mathrm{~A}$ and $5 / 6 \mathrm{~B}$ is not retained in $5 / 5 \mathrm{~A}$ and $\mathbf{5 / 5 B}$, and we attribute at least part of this to the fact that $5 / 5 \mathrm{~B}$ is able to adopt more trigonal MnS_{3} co-ordination and avoid the $\mu_{3}-S$ to $\mu_{3}-S$ clash of $5 / 6 \mathrm{~B}$. However, the EA of $5 / 5 \mathrm{~A}$ exceeds that of $\mathbf{5 / 5 B}$ by about the same margin of $5 / 6 \mathrm{~A}$ over 5/6B.
On the basis of the BE' and EA values a reason for our nonobservation of $\left[\mathrm{M}_{5} \mathrm{~S}_{5}\right]^{-}$is not apparent. However we note that the mass spectrum of manganese sulfide anions generated in a different experiment contains [$\mathrm{M}_{5} \mathrm{~S}_{5}$] as a relatively abundant ion. ${ }^{14}$ The PE spectrum shows onset features in the vicinity of 2 eV , in the same vicinity as our calculated EA values for 5/5B and $5 / 5 \mathrm{C}$, and it could be concluded from our EA and BE calculations that isomer $\mathbf{5 / 5 C}$ is formed in the experiments of Zhang et al. ${ }^{14}$ Thus our non-observation of $\left[\mathrm{M}_{5} \mathrm{~S}_{5}\right]^{-}$is probably a more pronounced example of the lower general abundance of $\left[\mathrm{Mn}_{x} \mathrm{~S}_{\mathrm{x}}\right]^{-}$ions relative to $\left[\mathrm{Mn}_{x} \mathrm{~S}_{\mathrm{x}+1}\right]^{-}$and $\left[\mathrm{M}_{\mathrm{n}} \mathrm{S}_{\mathrm{x}} \mathrm{O}\right]^{-}$ in our experiments. ${ }^{1}$

Fig. 7 Structures of the isomers of [$\left.\mathrm{M} \mathrm{n}_{6} \mathrm{~S}_{6}\right],\left[\mathrm{M} \mathrm{n}_{6} \mathrm{~S}_{7}\right]$ and $\left[\mathrm{M} \mathrm{n} \mathrm{n}_{6} \mathrm{~S}_{8}\right]$

[M $\mathrm{n}_{6} \mathrm{~S}_{6}$]

Four structure types were investigated (Fig. 7). I somer 6/6A is a stack of two $\mathrm{M}_{3} \mathrm{~S}_{3}$ triangles and has the connectivity $\mathrm{M}_{\mathrm{n}^{-}}$ $\left(\mu_{3}-S\right)_{6}$, and can also be considered as an Mn_{6} octahedron capped on six faces. I somer 6/6C has the same connectivity, but fewer Mn M M bonds, and can be regarded as a stack of two $\mathrm{M}_{3} \mathrm{~S}_{3}$ cycles in chair conformation. Isomer 6/6B was initiated as a pair of confacial cubanes, while 6/6D is the basket structure, established in FeS cluster chemistry, ${ }^{52-55}$ with the connectivity $M n_{6}\left(\mu_{4}-S\right)\left(\mu_{3}-S\right)_{4}(\mu-S)$. In $6 / 6 B$ with symmetry $D_{2 n}$ the two central S atoms are geometrically unable to achieve good $\mu_{4}-S$ bridging: the $\mathrm{S}-\mathrm{M} \mathrm{n}$ distances for each of these central S atoms are $2.19 \AA(\times 2)$ and $2.82 \AA(\times 2)$. In fact isomer $6 / 6 \mathrm{D}$ can be regarded as an improvement of $\mathbf{6 / 6 B}$, in that one of the competing $\mu_{4}-$ S bridges in 6/6B relaxes to a $\mu-S$ bridge in 6/6D , allowing the other μ_{4}-S bridge to adopt normal geometry.

The stacked triangles isomer 6/6A has the most favourable BE' and EA, although the basket isomer 6/6D has competitive $B E^{\prime}$. The stability of $6 / 6 \mathrm{~A}$ is consistent with the stability of its half, 3/3A. For optimised 6/6A (symmetry $\mathrm{D}_{3 \mathrm{~d}}$) the HOMO configuration of the anion is $\left(\mathrm{e}_{\mathrm{g}}\right)^{3}$, with a very small gap of 0.04 eV to the LUM O: the Mn n M n bond lengths are $2.35 \AA$ within the triangles and $2.37 \AA$ between, and the $M n-S$ bond lengths are $2.26 \AA$ within the triangles and $2.40 \AA$ between. At the Fermi level of the anion of $6 / 6 \mathrm{D}$ there are two orbitals separated by only 0.003 eV and containing one electron.

The published PE spectrum ${ }^{14}$ for $\left[\mathrm{M}_{6} \mathrm{~S}_{6}\right]^{-}$is consistent with our calculations. The first relatively weak onset occurs at ca. 2 eV and could be due to the occurrence of isomers $6 / 6 \mathrm{C}$ and/or 6/6D , while there is a more intense feature beginning at 2.6 eV which agrees very well with the calculated EA of 2.59 eV for isomer 6/6A.

[$\mathrm{M} \mathrm{n}_{6} \mathrm{~S}_{7}$] and $\left[\mathrm{M}_{6} \mathbf{S}_{8}\right.$]

Following the stability of $\mathbf{6 / 6 A}$, which has an octahedral M_{6} core, the two obvious structures for $\mathrm{Mn}_{6} \mathrm{~S}_{7}$ and $\mathrm{Mn}_{6} \mathrm{~S}_{8}$ involve

Fig. 8 Optimised structures of the five isomers for $\left[\mathrm{M} \mathrm{n}_{8} \mathrm{~S}_{8}\right]^{-}$
completion of the capping of the octahedron (Fig. 7). Optimised 6/7A (symmetry $\mathrm{C}_{3 v}$) has in the anion the HOMO configuration (e) ${ }^{3}$ with a 0.13 eV gap to the LUM 0 , while optimised anionic 6/8A (symmetry O_{h}) has the HOM O configuration $\left(e_{g}\right)^{3}$ with a 0.07 eV gap to the LU M 0 . The bond lengths in 6/8A are $\mathrm{Mn}-\mathrm{M} \mathrm{n} 2.42 \AA, \mathrm{M} \mathrm{n-S} 2.30 \AA$, and those in 6/7A are as expected intermediate between those of $6 / 6 \mathrm{~A}$ and $6 / 8 \mathrm{~A}$, and follow the normal variations with co-ordination numbers of the bonded atoms.
The energy data (Table 1, Figs. 2 and 3) show a progressive improvement in both $B E^{\prime}$ and $E A$ for the sequence of related structures $6 / 6 \mathrm{~A}, 6 / 7 \mathrm{~A}$ and $6 / 8 \mathrm{~A}$. It would therefore be expected that $\left[\mathrm{M} \mathrm{n} \mathrm{n}_{6} \mathrm{~S}_{8}\right]^{-}$would be observed in the laser ablation of MnS : however it is observed only as a product of addition of S from $\mathrm{H}_{2} \mathrm{~S}$ to $\left[\mathrm{M} \mathrm{n}_{6} \mathrm{~S}_{7}\right]^{-}$.
A this stage it is evident from the favourable structures 3/3A, 3/4A, 3/5A, 6/6A, 6/7A and 6/8A that the pattern of stacked triangles, possibly with single or double caps, is a favourable structural principle. This principle leads next to the compositions $9 / 9$ (and 9/10, 9/11), but leaves open the question of structure and structural principle for compositions which are not $x / y=3 n / 3 n, 3 n / 3 n+1,3 n / 3 n+2$. Structures for $M n_{8} S_{8}$ and $\mathrm{Mn}_{8} \mathrm{~S}_{9}$ have been investigated to seek responses to this question.

[$\mathrm{M} \mathrm{n}_{8} \mathrm{~S}_{8}$]

Five isomers of four different types have been investigated (see Fig. 8). Isomer 8/8A is constructed as an extension of the principle of stacked triangles involving the stacking of a pair of $D_{2 h}$ $\mathrm{M}_{4} \mathrm{~S}_{4}$ units, motif $\mathbf{M} \mathbf{2}$, which is an extension of the favourable $D_{3 h} \mathrm{M}_{3} \mathrm{~S}_{3}$ motif M 1 . In fact $8 / 8 \mathrm{~A}$ which has symmetry D_{2} can be regarded as a stack of such units in two directions. During optimisation four of the S atoms fold away from the other unit to form μ-S rather than $\mu_{3}-\mathrm{S}$ bridges. This is another indication of the favourability of $\mu-S$ bridges.

Isomer $\mathbf{8 / 8 B}$ is a square antiprism with $\left(\mu_{3}-\mathrm{S}\right)_{8}$. I somer $\mathbf{8 / 8 C}$ was constructed as a stack of three fused cubanoid $M n_{4} S_{4}$ units (see 4/4C). Isomers 8/8D and 8/8E can be regarded as being comprised of a central M_{4} quadrilateral capped on opposite sides by directionally opposed M_{2}, with $\left(\mu_{3}-S\right)_{6}(\mu-S)_{2}$ bridging in $\mathbf{8 / 8 E}$. The lower stability of $8 / 8 \mathrm{D}$ can be attributed to the poor bridging geometry of four S which although drawn as μ-S bridges could become $\mu_{4}-$ S except for interference with adjacent $\mu_{3}-$ S. TheM n_{8} core of $8 / 8 \mathrm{D}$ can also beenvisaged as a fused pair of trigonal prisms.
I somer $\mathbf{8 / 8 A}$ is the most stable, has the best EA, and has a good HOMO-LUM O gap of 0.17 eV .

M1

M2
[$\mathrm{M} \mathrm{n}_{8} \mathrm{~S}_{9}$]
The 12 isomers investigated have been conceived in four classes and are shown in Fig. 9. (1) Isomers in one group (8/9A, 8/9D , 8/9E, 8/9F) have been constructed by end-addition to the 6/6A isomer of stacked triangles, or alternatively could be considered as the triple stack of triangles, 9/9A, without one Mn atom. This construction method was investigated with the intention of elucidating the structural principle which could generate postulates for compositions $\mathrm{Mn}_{3 n+2} \mathrm{~S}_{3 n+3}$ from the favourable stacked triangle structures for $\mathrm{M}_{3 n} \mathrm{~S}_{3 n}$. (2) In the second group isomers $8 / 9 B$ and $8 / 9 C$ have four-fold rather than threefold conception. I somer $8 / 9 \mathrm{~B}$ is $8 / 8 \mathrm{~B}$ with a ($\mu_{4}-\mathrm{S}$) cap. Isomer $8 / 9 \mathrm{C}$, which differs from 8/9B in that it has more bonds in the tighter base, can be regarded as a staggered stack of 4/4A on M 2 , with a $\left(\mu_{4}-S\right)$ cap:thebridgingis $\left(\mu_{4}-S\right)\left(\mu_{3}-S\right)_{6}(\mu-S)_{2}$. (3) Thethird group contains four isomers with a bi-triangular-capped trigonal prism of $M \mathrm{n}_{8}$ and different S bridges. The first isomer in this group, 8/9G, has the same connectivity as the cluster $\left[\mathrm{Fe}_{\mathrm{T}^{-}}\right.$ $\left.\mathrm{MoS}_{9}\left(\mathrm{~L}^{1}\right)\left(\mathrm{L}^{2}\right)\left(\mathrm{L}^{3}\right)\right]\left(\mathrm{L}^{1}=\right.$ cysteine, $\mathrm{L}^{2}=$ homocitrate, $\mathrm{L}^{3}=$ imidazole) at the active site of the FeM o cofactor of the enzyme nitrogenase: this cluster is significant because it provides the site for binding and facile reduction of $\mathrm{N}_{2}{ }^{56-61}$ E ach of the isomers in this group has $\mathrm{D}_{3 h}$ symmetry, with three S atoms bridging ($\mu_{3}-\mathrm{S}$ or $\mu-\mathrm{S}$) each of the upper and the lower Fe_{4} cubanoid fragments, and three S atoms bridging (μ_{4}-S or $\mu-S$) equatorially around the central Fe_{6} trigonal prism. The three layers of bridging in these isomers are: $8 / 9 \mathrm{G}\left(\mu_{3}-\mathrm{S}\right)_{3}(\mu-\mathrm{S})_{3}\left(\mu_{3}-\mathrm{S}\right)_{3} ; 8 / 9 \mathrm{H}(\mu-\mathrm{S})_{3}\left(\mu_{4}-\mathrm{S}\right)_{3}(\mu-\mathrm{S})_{3} ;$ 8/91 $(\mu-S)_{3}(\mu-S)_{3}(\mu-S)_{3}$; and 8/9j $\left(\mu_{3}-S\right)_{3}\left(\mu_{4}-S\right)_{3}\left(\mu_{3}-S\right)_{3}$. (4) The fourth set of isomers, $8 / 9 \mathrm{~K}$ and $8 / 9 \mathrm{~L}$, are related to the previous group but have instead a trans bicapped octahedron as the M_{8} core. Thethree layers of bridging are $(\mu-\mathrm{S})_{3}\left(\mu_{3}-\mathrm{S}\right)_{3}(\mu-\mathrm{S})_{3}$ in $8 / 9 \mathrm{~K}$, and $(\mu-S)_{3}\left(\mu_{3}-S\right)_{3}\left(\mu_{3}-S\right)_{3}$ in $8 / 9$ L. A postulate with $(\mu-S)_{3}$ around the equatorial layer of a central Mn_{6} octahedron, that is structure 8/9G with one half twisted 60° relative to the other, reverted to the trigonal prismatic central geometry of 8/9G

Overall, the BE' and EA values indicate that isomer $8 / 9 \mathrm{~K}$ is the most favourable This can be understood on the basis of the larger number of $\mathrm{Mn} \mathrm{n}-\mathrm{Mn}$ bonding interactions, together with the occurrence of six doubly-bridging S atoms. In addition the isomers $8 / 9 \mathrm{C}, 8 / 9 \mathrm{D}, 8 / 9 \mathrm{~F}$ and $8 / 9 \mathrm{H}$ are energetically competitive, and these occur in all four of the construction groups. In general the isomers with more ($\mu-S$) linkages are more stable, and those with no such linkages (such as 8/9J) are less favourable.

Isomers 8/9A, 8/9D, 8/9E and 8/9F ideally possess mirror symmetry, and were optimised in point group C_{5}. Some residual gradients in the optimised structures suggested that the true minima would have lower symmetry, but this has not been investigated.

The substantially greater stability (BE^{\prime}, Table 1) of 8/9G and $8 / 9 \mathrm{H}$ over $8 / 9$ and $8 / 9$ J can be attributed to the placement of S atoms and the local M n co-ordination, and related to the bond lengths. All isomers have symmetry $D_{3 h}$, and in each there are two independent $\mathrm{M} \mathrm{n-M} \mathrm{n}$ distances for the trigonal prism and one additional $\mathrm{M} \mathrm{n-M} \mathrm{n}$ distance to the polar Mn atoms; there are also two independent Mn - S distances in the cubanoid caps and one $\mathrm{M} \mathrm{n-S}$ distance for the equatorial bonds. These unique distances are presented in Fig. 9. Isomers 8/9G and 8/9H have approximately trigonal co-ordination, MnS_{3} co-ordination at all Mn atoms, and the $\mathrm{Mn}-\mathrm{Mn}$ and Mn n S bond lengths are

Fig. 9 The optimised structures for 12 isomers of $\left[\mathrm{M} \mathrm{n}_{8} \mathrm{~S}_{9}\right]^{-}$. Selected interatomic distances (\AA) are marked
normal and vary as expected with the connectivities of the bonded atoms. However, in $8 / 9$ and $8 / 9$ J the S atoms lie in the same vertical mirror planes and consequently there is elon-

Fig. 10 The structures of the optimised isomers 9/9A and 9/9B, and the starting structure (9/9B-orig) for 9/9B

Fig. 11 The optimised structure for $\left[\mathrm{M}_{10} \mathrm{~S}_{10}\right]^{-}$
gation of the vertical $M n-M n$ distances and contraction of the horizontal $\mathrm{Mn}-\mathrm{M} \mathrm{n}$ distances in order to relieve non-bonded repulsion between these S atoms. In 8/9J the M_{6} trigonal prism is strongly distorted in order to allow sufficient separation of the $\mu_{4}-S$ and $\mu_{3}-S$ atoms.

F urther details of optimised $\mathrm{M}_{8} \mathrm{~S}_{9}$ structures with the nitrogenase core geometry are presented separately in a paper on analogous Fe compounds. ${ }^{40}$

[$\mathrm{Mn}_{9} \mathrm{~S}_{9}$]

The composition $\mathrm{Mn}_{9} \mathrm{~S}_{9}$ allows two standard structure types, namely a triple stack of $\mathrm{M}_{3} \mathrm{~S}_{3}$ triangles (isomer 9/9A) and a $2 \times 2 \times 1$ array of cubes (isomer 9/9B) from the close-packed lattice of solid M nS (see Fig. 10). B oth change on optimisation, with appreciable change in 9/9B such that the optimised structure bears little resemblance (other than the $C_{4 v}$ symmetry) to the starting geometry, shown as 9/9B -orig. Optimised 9/9B has a central Mn atom not bonded to any S atoms (and is the smallest structure with this feature), and four of the S atoms have become μ-S, allowing approximately trigonal $\mathrm{M} \mathrm{nS}_{3} \mathrm{CO}$ ordination of those $\mathrm{M} n$ atoms to which they are bonded.

Isomer 9/9A is more stable and has a better EA. While the structure is ideally $D_{3 h}$, it was found to have slightly lower energy when the three-fold symmetry was relaxed, and the optimised structure is $C_{2 v}$. The central M_{3} triangle in 9/9A opens as expected owing to the greater co-ordination of these M n atoms, and the $\mathrm{M} \mathrm{n-M} \mathrm{n}$ distances within the central triangle are $2.67,2.78(\times 2)$, in the end triangles $2.28,2.33(x 2)$, and $2.42,2.43 \AA$ between triangles.

[$\mathrm{M} \mathrm{n}_{10} \mathrm{~S}_{10}$]

The one structure investigated ($\mathbf{1 0 / 1 0 A}$) is built from the stacked triangles 9/9A by addition of one Mn atom in the equatorial plane: there are two μ-S bridges, and as is apparent from Fig. 11 some of the equatorial $\mathrm{M} \mathrm{n-Mn}$ connections are elongated (to $2.85 \AA$, not marked as bonds). The structure optimised from lower symmetry C_{2} to $C_{2 v}$. The stability and the EA of this structure are competitive with those of nearby compositions.

Fig. 12 The optimised structures for [$\mathrm{M}_{12} \mathrm{~S}_{12}$]

Fig. 13 The optimised structures for $\left[\mathrm{M}_{12} \mathrm{~S}_{13}\right]^{-}$

[$\mathrm{M}_{12} \mathrm{~S}_{12}$]

Three symmetrical structures with three rather different $M \mathrm{n}_{12}$ frameworks were investigated (see Fig. 12). I somer 12/12A (D_{30}) is a stack of four $\mathrm{M}_{3} \mathrm{~S}_{3}$ triangles, with $\left(\mu_{4}-\mathrm{S}\right)_{6}\left(\mu_{3}-\mathrm{S}\right)_{6}$ bridging; 12/12B ($D_{3 d}$) is an M_{12} cuboctahedron capped $\left[\left(\mu_{4}-S\right)_{6}\left(\mu_{3}-S\right)_{6}\right]$ on all but two trans triangular faces; while $\mathbf{1 2 / 1 2 C}\left(T_{h}\right)$ is an M_{12} icosahedron with $\left(\mu_{3}-S\right)_{12}$ capping. A Iternative incomplete cappings of the M_{12} cuboctahedron or icosahedron were not investigated (but the fully capped cuboctahedron has been investigated, see 12/14C).
The stacked triangles isomer 12/12A is most stable I somer $\mathbf{1 2 / 1 2 C}$ has the best EA (indeed close to the highest EA of all clusters investigated): there is an inverse relation between the $B E$ values and the EA values for the three isomers of $M n_{12} S_{12}$, which is to say that the differentiation of BE for the three isomers is greater in the neutral cluster than in the anion.
In the stacked triangles isomer 12/12A the expansion of the central $M n_{3}$ triangles is not as great as it was in 9/9A: the $\mathrm{Mn}-\mathrm{M} \mathrm{n}$ distances are 2.33 and $2.52 \AA$ in the outer and inner layers, and 2.43 and $2.58 \AA$ for the outer-inner and inner-inner layer connections respectively. In the icosahedron-based isomer 12/12C the six butterfly-shaped $\mathrm{M}_{2} \mathrm{~S}_{2}$ units which comprise it have different dimensions than the inter- $\mathrm{M} \mathrm{n}_{2} \mathrm{~S}_{2}$ distances. Within $\mathrm{M}_{2} \mathrm{~S}_{2}$ the distances are $\mathrm{Mn}-\mathrm{Mn} 2.26, \mathrm{Mn}-\mathrm{S} 2.38 \AA$, while the other distances are $\mathrm{M} \mathrm{n}-\mathrm{Mn} 2.45, \mathrm{Mn}-\mathrm{S} 2.21 \AA$.

12/14B

12/14A
Fig. 14 The optimised structures for $\left[\mathrm{M}_{12} \mathrm{~S}_{14}\right]^{-}$

Fig. 15 The unit cell of cubic close-packed MnS (13/14A -orig) and the structure to which it optimises, $13 / 14 \mathrm{~A}$, for $\left[\mathrm{M}_{13} \mathrm{~S}_{14}\right]$

In 12/12B there are two types of $\mathrm{M} \mathrm{n}, \mathrm{M} \mathrm{n}$ a close to the threefold axis, and equatorial $M n^{\text {eq }}$: the unique dimensions (\AA) are $M n^{\text {a }}-M n^{\text {a }} 2.36, M n^{\text {a }}-M n^{\text {eq }} 2.34, M n^{\text {eq }}-M n^{\text {eq }} 2.53, M n^{\text {a }}-\left(\mu_{4}-S\right)$ $2.29, \mathrm{M} \mathrm{n}^{\mathrm{a}}-\left(\mu_{3}-\mathrm{S}\right) 2.39, \mathrm{M}^{\text {eq }}-\left(\mu_{4}-\mathrm{S}\right) 2.40, \mathrm{M}^{\text {eq }}-\left(\mu_{3}-\mathrm{S}\right) 2.30$.

[$\mathrm{M} \mathrm{n}_{12} \mathrm{~S}_{13}$]

Theion $\left[\mathrm{M} \mathrm{n}_{12} \mathrm{~S}_{13}\right]^{-}$is unusually abundant in the spectrum of the products of laser ablation. Three symmetrical isomers (see Fig. 13) were constructed by addition of S to the three symmetrical $M \mathrm{n}_{12} \mathrm{~S}_{12}$ structures. The most stable is the isomer (12/13A) obtained by end-capping (μ_{3}-S) of the stacked triangles; the two others result from placement of S at the centre of the capped cuboctahedron, $\mathbf{1 2} / \mathbf{1 3 B}$, or at the centre of the capped icosahedron, 12/13C. This latter isomer contains a 12 -co-ordinate central S atom (S^{c}), and while all of the $S^{c}-M n$ distances are equal ($2.45 \AA$), the surface atoms aggregate slightly as six $\mathrm{Mn}_{2} \mathrm{~S}_{2}$ units, as in $\mathbf{1 2 / 1 2 C}$. The $\mathrm{Mn}-\mathrm{Mn}$ distance within the $\mathrm{M}_{2} \mathrm{~S}_{2}$ unit is $2.52 \AA$, and between these units is $2.59 \AA$; the $\mathrm{Mn}-\mathrm{S}$ distances within $\mathrm{Mn}_{2} \mathrm{~S}_{2}$ are $2.34 \AA$ and between them $2.18 \AA$. The expansion of $12 / 13 \mathrm{C}$ relative to $\mathbf{1 2 / 1 2 C}$ due to the presence of S^{c} occurs mainly in the $\mathrm{Mn}-\mathrm{Mn}$ bond within the $\mathrm{M}_{2} \mathrm{~S}_{2}$ aggregate, which increases from 2.26 to $2.52 \AA$: the $\mathrm{Mn} \cdots \mathrm{Mn}$ diagonals are $4.58 \AA$ in $\mathbf{1 2} / \mathbf{1 2 C}$ and $4.90 \AA$ in 12/13C.
In anionic $\mathbf{1 2} / \mathbf{1 3 B}$ the six $M n^{\text {a }}$ atoms in the uncapped faces are much closer and bonded ($2.27 \AA$) to the central S atom (S^{c}) than are the six equatorial Mn atoms ($\mathrm{S}^{c} \cdots \mathrm{M} \mathrm{n}^{\mathrm{eq}}=2.67 \AA$). The other dimensions, following the notation used for 12/12B, are $\mathrm{Mn}^{\mathrm{a}}-\mathrm{Mn}^{\mathrm{a}} 2.47, \mathrm{M} \mathrm{n}^{\mathrm{a}}-\mathrm{M}^{\text {eq }} 2.39, \mathrm{M}^{\text {eq }}-\mathrm{M}^{\text {eq }} 2.67, \mathrm{Mn}^{\mathrm{a}}-$ ($\left.\mu_{4}-S\right)$ 2.31, $\mathrm{M} \mathrm{n}^{\text {a }}-\left(\mu_{3}-S\right) 2.33, \mathrm{M} \mathrm{n}^{\text {eq }}-\left(\mu_{4}-\mathrm{S}\right) 2.45, \mathrm{M} \mathrm{n}^{\mathrm{ea}}-\left(\mu_{3}-\mathrm{S}\right)$ $2.29 \AA$. The expansion of $12 / 12 \mathrm{~B}$ caused by the central S atom occurs mainly in the $\left(\mathrm{M}^{\text {eq }}\right)_{6}$ cycle.
A gain there is inverse correlation of the BE and EA , although it is not as pronounced as in the isomers of [$\mathrm{M}_{12} \mathrm{~S}_{12}$].

[$\mathrm{M} \mathrm{n}_{12} \mathbf{S}_{14}$]

The two structures investigated (see Fig. 14) are symmetrical additions to previous stable structures. Isomer 12/14A is a quadruplestack of triangles capped at each end, while $\mathbf{1 2} / \mathbf{1 4 B}$ is a totally capped cuboctahedron. Both are calculated to have

15/15A

15/15B

Fig. 16 The optimised structures for $\left[\mathrm{M}_{15} \mathrm{~S}_{15}\right]^{-}$

Fig. 17 Calculated energy spectrum of the molecular orbitals of 13/ 14A. The lengths of the bars represent the degeneracies: the shortest bars are singlets, and the longest bars represent overlapping triplets. The highest occupied molecular orbital (HOM O) is $\left(\mathrm{t}_{1 u}\right)^{6}$ at -2.09 eV , almost equal in energy to two $\left(\mathrm{a}_{\mathrm{g}}\right)^{2}$ orbitals, and thus appears as a bar of relative length 5 . The lengths (from the baseline) of the red, yellow and purple sections of the bars are the proportions of atomic orbital contributions: M n 3d red; S 3s purple; S 3p yellow
high $B E$ and high $E A$, and again there is an inverse correlation between these two quantities.

[$\left.\mathrm{M}_{13} \mathrm{~S}_{14}\right]$

This is a significant composition, being that of the unit cell of cubic close packed M nS, shown in Fig. 15 as structure 13/14Aorig. This unit cell was optimised resulting ($\mathbf{1 3 / 1 4 A}$) in substantial contraction of the $M n$ atoms inside to form $M n-M n$ bonds which are not present in the starting geometry. The symmetry of the optimised structure was O_{h} (lower symmetry $\mathrm{D}_{2 h}$ was constrained during the optimisation) ; $\mathrm{Mn}-\mathrm{Mn}$ bonds are all 2.48 \AA, the $\mathrm{M} \mathrm{n}-\left(\mu_{3}-S\right)$ bond length is $2.28 \AA$ and $\mathrm{Mn}-\left(\mu_{4}-S\right)$ is $2.37 \AA$.
We note that the BE and the EA of this structure are high, and we are unable to explain its relatively low abundance in the spectra.

[$\mathrm{n}_{15} \mathbf{S}_{15}$]

Two possible structures have been investigated and are shown in Fig. 16. Isomer $15 / 15 \mathrm{~A}$ is the standard five-fold stack of triangles with $\left(\mu_{4}-S\right)_{9}\left(\mu_{3}-S\right)_{6}$, while $15 / 15 B$ is based on the FrankK asper polyhedra, ${ }^{62,63}$ with $\left(\mu_{3}-\mathrm{S}\right)_{15}$. Isomer $15 / 15 \mathrm{~A}$ is more stable, but 15/15B has the better EA. I somer 15/15B has virtual three-fold symmetry ($\mathrm{C}_{3 n}$) but was optimised in point group C_{5}. Structure $\mathbf{1 5} / \mathbf{1 5 B}$, which is relatively empty, is related to $15 / 15 A$ in that there are five three-fold layers, but the central layers in 15/15B are more expanded. Using the labels $\mathrm{Mn}^{\mathrm{a}}, \mathrm{M}^{\mathrm{t}}, \mathrm{M} \mathrm{n}^{\text {eq }}$, $S^{\text {a }}, S^{\mathrm{t}}, \mathrm{S}^{\mathrm{eq}}$ for the M n and S atoms which are axial, tropical, and equatorial in the geographic image of this polar molecule, the key dimensions are: $M n^{\mathrm{a}}-\mathrm{M} \mathrm{n}^{\mathrm{a}} 2.27,2.29 ; \mathrm{M}^{\mathrm{a}}-\mathrm{M} \mathrm{n}^{\mathrm{t}} 2.38-2.48$; $M n^{t}-M n^{t} 4.26-4.33 ; \mathrm{M}^{\text {eq }}-\mathrm{M}^{\text {eq }} 3.05,3.10 ; \mathrm{Mn}^{\mathrm{t}}-\mathrm{M}^{\text {eq }} 2.54-$ 2.63; $\mathrm{M} \mathrm{n}^{\mathrm{a}}-\mathrm{M}^{\text {eq }} 2.51-2.56 ; \mathrm{M}^{\mathrm{a}}-\mathrm{S}^{\text {a }} 2.24-2.40 ; \mathrm{M}^{\mathrm{a}}-\mathrm{S}^{\mathrm{t}} 2.26-$ 2.28; $\mathrm{M} \mathrm{n}^{\mathrm{t}}-\mathrm{S}^{\mathrm{a}} 2.24-2.27 ; \mathrm{M}^{\mathrm{t}}-\mathrm{S}^{\mathrm{t}}$ 2.24-2.25; $\mathrm{M}^{\mathrm{t}}-\mathrm{S}^{\mathrm{eq}}$ 2.21-2.22; and $M n^{\text {eq }}-S^{\text {eq }} 2.40-2.43 \AA$.

E lectronic structures

The DF calculations provide full descriptions of the electronic structures of all isomers, information too voluminous to

Fig. 18 Comparison of the orbital spectra of the stacked triangle isomers, 3/3A, 6/6A , 9/9A and 15/15A , showing the $\mathrm{M} \mathrm{n} \mathrm{3d} \mathrm{contribution}$ as the black section of each bar. The length of the bar signifies orbital degeneracy. The H OM Os are marked
present here Using the calculated molecular orbital energy spectra we describe the general characteristics and some specific features of the electronic structures of the anions $\left[\mathrm{M} \mathrm{n} \mathrm{n}_{\mathrm{S}} \mathrm{S}_{\mathrm{y}}\right]^{-}$.

As illustration of the general electronic structure, Fig. 17 shows the energies and compositions of the molecular orbitals of $\left[\mathrm{M}_{13} \mathrm{~S}_{14}\right]^{-} \mathbf{1 3} / 14 \mathrm{~A}$ in the region -20 to +5 eV . The set of orbitals around -15 eV are principally S 3 s . There is a band of orbitals extending from -8 to 0.5 eV , and these have mainly S $3 p$ character in the bottom section of the band and mainly $\mathrm{M} n$ 3d in the top section. M ost of the orbitals in this band are orbital triplets. The HOMO is $\left(\mathrm{t}_{1 \mathrm{u}}\right)^{6}$, at -2.09 eV , just above other filled orbitals, and there is a small gap of 0.19 eV to the LUM O. N ote that the orbitals at this F ermi level are mainly M n 3d in character.

This general orbital structure is characteristic of all of the [$\mathrm{M} \mathrm{n}_{\mathrm{x}} \mathrm{S}_{\mathrm{y}}$] clusters. In particular, the band of closely spaced orbitals, mainly Mn3d, either side of the F ermi level occurs in all of the larger clusters. The effect of size is illustrated in Fig. 18, which compares the orbital spectra for four of the stacked triangle isomers, 3/3A, 6/6A, 9/9A and 15/15A. N ote that as the size of the stack increases the band of bonding M Os spreads and its mean energy (and the energy of the HOMO) become more negative. N ote also that there are very closelying orbitals at the HOMO.

The orbital spectrum of 6/6A (Fig. 18) shows a substantial gap of 0.7 eV between the HOMO and next highest occupied MO (NHOMO). This property is characteristic of the related isomers 6/7A and 6/8A with one and two ($\mu_{3}-\mathrm{S}$) caps on the stack of triangles, for which the energy separations between the HOMO and the NHOMO are 0.7 and 0.9 eV respectively. A gap of this type is evident also in the orbital energy spectrum of 12/13A (see Fig. 19), the monocapped stack of four triangles. However it is to be emphasised that this gap does not suggest that the oxidised forms of these isomers are significant, because in all cases there is a considerable number of electrons in the HOMO set: the HOMO configuration for each of $\mathbf{6 / 6 A}, 6 / 7 \mathrm{~A}$ and $6 / 8 \mathrm{~A}$ is $(\mathrm{e})^{3}$, and for $12 / 13 \mathrm{~A}$ there are seven electrons in closely degenerate orbitals at the F ermi level.

Fig. 19 compares the orbital energy spectra for the three different isomers of $\left[\mathrm{M}_{12} \mathrm{~S}_{13}\right]^{-}$, an abundant ion. The crowded band at the Fermi level is particularly evident in the S-centred

Fig. 19 Comparison of the orbital spectra of the M Os for the three isomers of $\left[M \mathrm{n}_{12} \mathrm{~S}_{13}\right]^{-}$. The length of the bar signifies orbital degeneracy, and the $\mathrm{M} \mathrm{n} \mathrm{3d} \mathrm{contribution} \mathrm{is} \mathrm{shown} \mathrm{as} \mathrm{the} \mathrm{black} \mathrm{section} \mathrm{of} \mathrm{each}$ bar. The H OM Os are marked

M3

M4
cuboctahedral (12/13B) and icosahedral (12/13C) isomers, which also have a characteristic separate energy for the M Os with strong contributions from the central S atom, S^{c} : the MOs with strong $S^{c} 3 p$ contribution occur at -9 eV , and the $\mathrm{S}^{\mathrm{c}} 3 \mathrm{~s}$ contribution occurs at -17.5 eV .

D iscussion

G eometric structural principles

Over 60 postulated structures have been investigated, and the combined results on structure and energy allow extraction of some general principles. (1) The stacked triangles motif, in 3/3A, 6/6A, 9/9A, 12/12A and 1515/A , is more stable than any alternative construction motif postulated so far. (2) Capping of one triangular end of the stack is also a favourable geometry in the calculated structures 3/4A , 6/7A and 12/13A , and it can be assumed that homologous structures would occur for $\mathrm{Mn}_{9} \mathrm{~S}_{10}$ and other members of the $\left[\mathrm{M}_{3 n} \mathrm{~S}_{3 n+1}\right.$] series. (3) The doublycapped stack of triangles has been calculated for 3/5A, 6/8A and $\mathbf{1 2} / \mathbf{1 4 A}$ and has favourable BE' but less competitive EA. Ions $\left[\mathrm{M}_{3 n} \mathrm{~S}_{3 n+2}\right]^{-}$are not observed in the laser ablation but can be formed by addition to [$\left.\mathrm{M} \mathrm{n}_{3 n} \mathrm{~S}_{3 n+1}\right]^{\text {- }}$: these results suggest that $E A$ is a factor more significant than BE^{\prime} in determining which negative ions result from the aggregation processes which follow laser ablation. (4) In the stacked-triangles structure type, the central triangles are expanded relative to the end triangles. This is related to the presence in the central triangles of ($\mu_{4}-\mathrm{S}$) bridges in a butterfly M_{4} motif $\mathbf{M} 3$. In this motif there is conflict between favourable increase in the angular spread of the four bonds to S , and reduction in $\mathrm{Mn} \mathrm{n}-\mathrm{Mn}$ bonding with increased $\mathrm{Mn}-\mathrm{Mn}$ distances. The observed expansion of the central triangles (and of $\mathbf{M} \mathbf{3}$) is interpreted as signifying the
greater importance of the $\mathrm{Mn}-\mathrm{S}$ bonding in this region. (5) The ($\mu_{4}-$ S) M_{4} butterfly motif M 3 occurs also in structures $4 / 5 \mathrm{C}$, 6/6B, 6/6D, 8/9A, 8/9C, 8/9E and 10/10A. The unfavourability of 6/6B occurs because two M $\mathbf{3}$ units are back to back and in geometrical conflict, while the favourable isomer 6/6D has only one M $\mathbf{3}$ which adopts better geometry. (6) M otif M 4 with square $\left(\mu_{4}-S\right) M n_{4}$ occurs in $8 / 9 \mathrm{~B}, 8 / 9 \mathrm{H}, 8 / 9 \mathrm{~J}, 9 / 9 \mathrm{~B}, 12 / 12 \mathrm{~B}, 12 /$ 13B, 12/14B and $13 / 14 \mathrm{~A}$. It is not evident to us that the M 4 moiety confers stability. (7) It appears that ($\mu-S$) bridging can be more favourable (in terms of BE) than ($\mu_{3}-$ S) bridging. Instances of comparison isomers, where other Mn M M bonding is the same and which clearly demonstrate this principle, are 4/ $4 \mathrm{D}>4 / \mathbf{4 C}$ and $5 / 6 \mathrm{~A}>5 / 6 \mathrm{~B}$. (8) The preceding generalisation relates to the fundamental question as to whether larger numbers of bonds (and thus higher order bridging) confer greater stability. However, it is evident that the local co-ordination stereochemistry is at least as significant as the number of bonds. Thus the occurrence of MnS_{3} local co-ordination in approximately trigonal planar stereochemistry is common in many of the favourable structures: 4/6A, 5/5B, 6/6D, 8/9E, 8/9F, 9/9B, 12/12D, 12/13C and 15/15B. A good illustration of the favourable effect of local $\mathrm{M} \mathrm{nS}_{3}$ co-ordination, overriding the number of bridges, is found in the BE comparisons for 8/9E, 8/9F > $\mathbf{8 / 9 G}, 8 / 9 \mathrm{H}$. (9) Local MnS_{4} also occurs in many of the larger structures, but often incurs $\mathrm{S} \cdots$ S conflict. Structures which illustrate this point are: $\mathbf{5 / 6 B}, \mathbf{8 / 9 H}, \mathbf{1 2} / \mathbf{1 2 C}, \mathbf{1 2} / \mathbf{1 3 C}$ and $\mathbf{1 3} /$ 14A. (10) We note that the cubanoid structure $\mathrm{Mn}_{4} \mathrm{~S}_{4}$ is not an important structure, in contrast to $\mathrm{Fe}_{4} \mathrm{~S}_{4}$ which is a feature of iron-sulfide cluster chemistry. (11) The $\mathrm{M} \mathrm{n-M} \mathrm{n} \mathrm{bonding} \mathrm{is} \mathrm{a}$ marked feature of all structures. This point is demonstrated clearly by the optimisation of $13 / 14 \mathrm{~A}$-orig to $13 / 14 \mathrm{~A}$ in which each Mn atom is connected to five Mn at a distance of $2.48 \AA$. It is most pronounced in small structures such as 2/3C and 4/4D where the (μ-S) bridges provide little restraint (the acuteness of the $\mathrm{M} \mathrm{n-S-M} \mathrm{n}$ angle) on the $\mathrm{M} \mathrm{n-M}$ n distances: in anionic 2/3C the Mn n-M n distance optimises to $1.89 \AA$, while in 4/4D the unbridged and bridged $\mathrm{M} \mathrm{n}-\mathrm{Mn}$ distances are $2.14 \AA$ and 2.21 \AA respectively. As is usual in metal clusters the $M n-M n$ distances depend on the co-ordination numbers of the metal atoms. (12) One of the issues for large binary clusters containing metal and a more electronegative element is whether there is segregation of the metal atoms inside (the 'core plus coating' concept) as the cluster size increases, or whether a matrix of the two types of atoms (the 'fruit cake' concept) is retained independent of size. Despite the prevalence of $\mathrm{Mn}-\mathrm{Mn}$ bonding in the MnS clusters, there is no indication up to $\mathrm{M}_{15} \mathrm{~S}_{15}$ that segregation is favoured. (13) Finally, we recall the caveats (i) that other structures not postulated or investigated here could be more stable, and (ii) that we have not confirmed that the optimised structures represent minima on the geometry-energy hypersurface. Nevertheless, we are confident that our results provide a valuable picture of the relevant principles of geometric structure for manganese sulfide clusters.

E lectronic structural principles

(1) Close-lying orbitals occur in the vicinity of the Fermi level, and the HOMO-LUMO gaps are calculated to be in the range $0.01-0.2 \mathrm{eV}$ for the majority of these structures. L ow-lying electronic states are to be expected, and the electronic, optical and magnetic properties of these clusters are predicted to be very interesting. (2) The charge state of the clusters has little influence on the geometry. In the stellated isomer 4/4D (as representative of smaller clusters) the bridged $\mathrm{Mn} \mathrm{n}-\mathrm{Mn}$ distances decrease from 2.33 to $2.30 \AA$ between neutral and anion, the unbridged $M n-M n$ distance decreases from 2.18 to $2.14 \AA$, and the $\mathrm{M} n-S$ distance increases from 2.18 to $2.21 \AA$; these show the $\mathrm{Mn} \mathrm{n}-\mathrm{M} \mathrm{n}$ bonding character and slight Mn n S antibonding character of the HOM O. In the first of the stacked triangle series,

6/6A, comparing anion with neutral: $\mathrm{Mn}-\mathrm{Mn}$ intra-triangle is unchanged at $2.35 \AA ; \mathrm{Mn}-\mathrm{Mn}$ inter-triangle increases 2.36 to $2.37 \AA$; M n-S intra-triangle increases 2.25 to $2.26 \AA$; and $\mathrm{M} \mathrm{n}-\mathrm{S}$ inter-triangle increases 2.38 to $2.40 \AA$. By 12/12A the differences in bond lengths between neutral and anionic clusters are less than $0.01 \AA$. (3) A tomic partial charges are cal culated to be in the vicinity of ± 0.3 for neutral clusters and $\mathrm{Mn}^{+0.2}, \mathrm{~S}^{-0.4}$ for anionic clusters: as an example, in anionic $6 / 6 \mathrm{D}$ the atomic charges are $\mathrm{M}^{+0.25}, \mathrm{~S}^{-0.42}$ in the $(\mu-\mathrm{S}) \mathrm{M} \mathrm{n}_{2}$ upper section of the cluster, $\mathrm{M}^{+0.06}, \mathrm{~S}^{-0.39}$ in the central $\left(\mu_{3}-\mathrm{S}\right)_{4}$ section, and $\mathrm{M} \mathrm{n}^{+0.36}$, $\mathrm{S}^{-0.42}$ in the lower $\left(\mu_{4}-\mathrm{S}\right)$ section.

Photoelectron spectra

In reporting the photoelectron spectra of ions up to $\left[\mathrm{M}_{6} \mathrm{~S}_{6}\right]^{-}$, Zhang et al. ${ }^{14}$ classified the spectra as $M n_{x} S_{2}(x=1-4), M n_{x} S_{3}$ ($x=1-4$), $M n_{x} S_{4}(x=2-5), M n_{x} S_{5}(x=5$ or 6$)$, and $M n_{6} S_{6}$, and extracted EA values from the onset of photoelectron and vertical detachment energies from the peaks. Our structural principles provide no support for these classifications on geometrical grounds. H owever, there is good general agree ment between the experimental PE data and our density functional calculations when the possibility of structural isomers is included and the PE spectra are reconsidered as representing the overlaps of photoelectron energies from several isomers.

Related M nO clusters

Ziemann and Castleman ${ }^{64}$ have described the formation of a collection of comparable manganese oxide clusters, all as cations, with the general formula $\left[\mathrm{M} \mathrm{n}_{\mathrm{x}} \mathrm{O}_{\mathrm{x}}\right]^{+}$for $\mathrm{x}=1-13$, and $\left[\mathrm{M}_{\mathrm{x}} \mathrm{O}_{\mathrm{x}+1}\right]^{+}$for $\mathrm{x}=4-22$. It is remarkable that the compositions of the MnS clusters and the MnO clusters (and our MnOS clusters) are virtually identical. The significance of this result is that the compositions are the same even though the formation conditions and instrumentation are different, and both anions and cations are involved. This fact alone suggests that intrinsic thermodynamic stability attends these compositions. The abundances of the $\left[M \mathrm{n}_{\mathrm{x}} \mathrm{O}_{\mathrm{x}}\right]^{+}$clusters are enhanced for $\mathrm{x}=3$, 6 , 9 or 12 , which is consistent with the favourability of stacked triangles structures. Ziemann and Castleman ${ }^{64}$ proposed stacked $\mathrm{Mn}_{3} \mathrm{O}_{3}$ hexagon structures for these clusters, that is structures analogous to the stacked $\mathrm{M}_{3} \mathrm{~S}_{3}$ triangles but without the $\mathrm{Mn}-\mathrm{Mn}$ bonding. We have calculated structures for some of the MnO clusters and find that $\mathrm{Mn}-\mathrm{Mn}$ bonding is important, as it is in the MnS clusters. A further point of comparison between the manganese oxide and manganese sulfide systems is that $\left[\mathrm{M}_{13} \mathrm{O}_{14}\right]^{+}$and $\left[\mathrm{M}_{13} \mathrm{~S}_{14}\right]^{-}$both occur with low abundance. This lower stability in the gas phase (as cation or anion) of the basic unit cell of the solid further illustrates the difference between gas phase and condensed phase structures.

Thus we return to the question raised at the outset: what is the nature of the stability of the [$\left.\mathrm{M} \mathrm{n}_{\mathrm{x}} \mathrm{S}_{\mathrm{y}}\right]^{-}$clusters? F rom our results it would appear that the answer is thermodynamic stability, reflected in the favourable binding energies. However, we have calculated only a few of the unobserved compositions, and none well away from the pattern on the ion map, and so it is still not possible to comment on possible reasons for their nonoccurrence in our experiments.

Finally, because the compositions of the $\left[M n_{x} S_{y}\right](\mathrm{g})$ clusters are similar to those of a series of $\left[\mathrm{Fe}_{\mathrm{x}} \mathrm{S}_{\mathrm{y}}\right]$ (g) clusters, ${ }^{5}$ some transferability of the geometrical structure results from the manganese set to the iron set is expected.

Acknowledgements

The support of this research by the Australian Research Council is gratefully acknowledged.

References

1 I. G. D ance, K. J. Fisher and G. D. Willett, preceding paper.
2 J. H. EI N akat, I. G. D ance, K. J. F isher, D. R ice and G. D. Willett, J. A m. Chem. Soc., 1991, 113, 5141.

3 J. H. EI Nakat, I. G. D ance, K . J. Fisher and G. D. Willett, Inorg. Chem., 1991, 30, 2957.
4 H. J. El-N akat, I. G. D ance, K . J. Fisher and G. D. Willett, J. C hem Soc., C hem. Commun., 1991, 746.
5 J. H. El Nakat, K. J. Fisher, I. G. D ance and G. D. Willett, Inorg. Chem., 1993, 32, 1931.
6 I. G. D ance and K. J. F isher, P rog. Inorg. C hem., 1994, 41, 637.
7 I. G. D ance and K. J. Fisher, M ater. Sci. Forum, 1994, 152, 137
8 I. G. D ance, K . J. Fisher and G. D. Willett, A ngew. Chem., Int. Ed. Engl., 1995, 34, 201.
9 I. G. D ance, K. J. Fisher and G. D. Willett, J. Chem. Soc., Chem. Commun., 1995, 975.
10 I. G. D ance, K. J. Fisher and G. D. Willett, Inorg. Chem., 1996, 35, 4177.

11 K . J. Fisher, I. G. Dance and G. D. Willett, R apid Commun. M ass Spectrom., 1996, 10, 106.
12 K. J. Fisher, I. G. D ance, G. D. Willett and M. Yi, J. Chem. Soc., D alton Trans., 1996, 709.
13 K . J. Fisher and I. G. D ance, Polyhedron, 1997, in the press.
14 N. Zhang, H. K awamata, A. Nakajima and K. K aya, J. Chem. Phys., 1996, 104, 36.
15 T. Ziegler, Chem. Rev., 1991, 91, 651.
16 T. Ziegler, P ure A ppl. C hem., 1991, 63, 873.
17 A. Rosa and E. J. Baerends, Inorg. C hem., 1992, 31, 4717.
18 C. Sosa, J. W. A ndzelm, B. C. Elkin, E. Wimmer, K. D. D obbs and D. A . Dixon, J. P hys. C hem., 1992, 96, 6630.

19 T. Ziegler, M onograph, Energetics of Organometallic Species, ed. J.A . M artinho Simoes, K luwer A cademic Publishers, D ordrecht, 1992, pp. 357-385.
20 R. J. D eeth, J. C hem.Soc., F araday Trans., 1993, 89, 3745.
21 R. J. D eeth, J. C hem. Soc., D alton Trans., 1993, 3711.
22 E. Folga and T. Ziegler, J. Am. Chem. Soc., 1993, 115, 5169.
23 A. Berces and T. Ziegler, J. Phys. C hem., 1995, 99, 11417.
24 R. J. D eeth, Struct. B onding (Berlin), 1995, 82.
25 P. M argl, T. Ziegler and P. E. Blochl, J. A m. Chem. Soc., 1995, 117, 12625.

26 M. R. Bray and R. J. Deeth, I norg. C hem., 1996, 35, 5720.
27 I. G. Dance, Transition M etal Sulfur Chemistry: Biological and Industrial Significance, eds. E. I. Stiefel and K. M atsumoto, A merican Chemical Society, Washington, DC, 1996, pp. 135-152.
28 I. G. D ance, J. A m. C hem. Soc., 1996, 118, 6309.
29 I. G. D ance, J. A m. C hem. Soc., 1996, 118, 2699.
30 A. Rosa, G. Ricciardi, E. J. Baerends and D. J. Stufkens, Inorg. C hem., 1996, 35, 2886.
31 J. H. Wu and C. A. Reynolds, J. A m. Chem. Soc., 1996, 118, 10545.
32 B. Delley, J. Chem. Phys., 1990, 92, 508.
33 B. Delley, J. Chem. Phys., 1991, 94, 7245.
34 B. Delley, N ew J. Chem., 1992, 16, 1103.

35 B. Delley, M. Wrinn and H. P. Lüthi, J. Chem. Phys., 1994, 100, 5785.

36 A. D. Becke, Phys. Rev. A , 1988, 38, 3098.
37 C. Lee, W. Y ang and R. G. Parr, P hys. R ev. B, 1988, 37, 785.
38 M . R . N imlos and G. B. Ellison, J. Phys. C hem., 1986, 90, 2574.
39 D. Feldmann, R. Rackwitz, H. J. K aiser and E. Heinecke, Z. N aturforsch., Teil A, 1977, 32, 600.

40 I. G. D ance, unpublished work.
41 H. O. Stephan, M. G. K anatzidis and G. H enkel, A ngew. Chem., Int. Ed. Engl., 1996, 35, 2135.
42 H. O. Stephan and G. Henkel, A ngew. Chem., Int. Ed. E ngl., 1994, 33, 2322.
43 P. D. W. Boyd, Q. Li, J. B. Vincent, K. Folting, H. R. Chang, W. E. Streib, J. C. Huffman, G. Christou and D. N. H endrickson, J. A m. Chem. Soc., 1988, 110, 8537.

44 Q. Li, J. B. Vincent, E. Libby, H. R. Chang, J. C. Huffman, P. D. W. Boyd, G. Christou and D. N. H endrickson, A ngew. Chem., Int. Ed. Engl., 1988, 27, 1731.
45 K. S. H agen and W. H. A rmstrong, J. A m. Chem. Soc., 1989, 111, 774.

46 E. Libby, J. B. Vincent, J. C. Huffman, D. N. Hendrickson and G. Christou, ACS M eeting A bstracts, 1989, 197, IN OR -296.

47 A. R. Schake, J. B. Vincent, Q. Li, P. D. W. Boyd, K. Folting, J. C. Huffman, D. N. H endrickson and G. Christou, Inorg. Chem., 1989, 28, 1915.
48 A. G. Blackman, J. C. H uffman, E. B. Lobkovsky and G. Christou, Polyhedron, 1992, 11, 251.
49 A. R. Schake, H. L. Tsai, N. de Vries, R. J. Webb, K. Folting, D. N. Hendrickson and G. Christou, J. Chem. Soc., Chem. Commun., 1992, 181.
50 R. Sessoli, H. L. Tsai, A. R. Schake, S. Wang, J. B. Vincent, K. Folting, D. Gatteschi, G. Christou and D. N. Hendrickson, J. A m. Chem. Soc., 1993, 115, 1804.

51 Z. Sun, P. K. G antzel and D. N. H endrickson, Inorg. C hem., 1996, 35, 6640.
52 M. S. Reynolds and R . H. H olm, Inorg. Chem., 1988, 27, 4494.
53 B. S. Snyder and R. H. H olm, I norg. C hem., 1988, 27, 2339.
54 B. S. Snyder and R. H. H olm, Inorg. C hem., 1990, 29, 274.
55 B. S. Snyder, M. S. Reynolds, R. H. H olm, G. C. Papaefthymiou and R . B. Frankel, Polyhedron, 1991, 10, 203.
56 B. K. Burgess, Chem. Rev., 1990, 90, 1377.
57 D. C. Rees, M. K. Chan and J. K im, A dv. Inorg. C hem., 1993, 40, 89. 58 I. G. D ance, A ust. J. Chem., 1994, 47, 979.
59 J. K im and D. C. Rees, Biochemistry, 1994, 33, 389.
60 G. J. L eigh, E ur. J. B iochem., 1995, 229, 14.
61 I. G. D ance, C hem. Commun., 1997, 165.
62 F. C. Frank and J. S. K asper, A cta C rystallogr., 1958, 11, 184.
63 F. C. Frank and J. S. K asper, A cta C rystallogr., 1959, 12, 483.
64 P. J. Ziemann and A. W. Castleman, Phys. R ev. B, 1992, 46, 13480.

Received 4th February 1997; Paper 7/00821J

